97 resultados para Colonization.
Resumo:
Ecological theory predicts that communities using the same resources should have similar structure, but evolutionary constraints on colonization and niche shifts may hamper such convergence. Multitrophic communities of wasps exploiting fig fruits, which first evolved about 75MYA, do not show long-term “inheritance” of taxonomic (lineage) composition or species diversity. However, communities on three continents have converged ecologically in the presence and relative abundance of five insect guilds that we define. Some taxa fill the same niches in each community (phylogenetic niche conservatism). However, we show that overall convergence in ecological community structure depends also on a combination of niche shifts by resident lineages and local colonizations of figs by other insect lineages. Our study explores new ground, and develops new heuristic tools, in combining ecology and phylogeny to address patterns in the complex multitrophic communities of insect on plants, which comprise a large part of terrestrial biodiversity.
Resumo:
High soil phosphorus (P) concentration is frequently shown to reduce root colonization by arbuscular mycorrhizal (AM) fungi, but the influence of P on the diversity of colonizing AM fungi is uncertain. We used terminal restriction fragment length polymorphism (T-RFLP) of 18S rDNA and cloning to assess diversity of AM fungi colonizing maize (Zea mays), soybean (Glycene max) and field violet (Viola arvensis) at three time points in one season along a P gradient of 10280mgl1 in the field. Percentage AM colonization changed between sampling time points but was not reduced by high soil P except in maize. There was no significant difference in AM diversity between sampling time points. Diversity was reduced at concentrations of P > 25mgl1, particularly in maize and soybean. Both cloning and T-RFLP indicated differences between AM communities in the different host species. Host species was more important than soil P in determining the AM community, except at the highest P concentration. Our results show that the impact of soil P on the diversity of AM fungi colonizing plants was broadly similar, despite the fact that different plants contained different communities. However, subtle differences in the response of the AM community in each host were evident.
Resumo:
Background Staphylococcus aureus is a major cause of healthcare associated mortality, but like many important bacterial pathogens, it is a common constituent of the normal human body flora. Around a third of healthy adults are carriers. Recent evidence suggests that evolution of S. aureus during nasal carriage may be associated with progression to invasive disease. However, a more detailed understanding of within-host evolution under natural conditions is required to appreciate the evolutionary and mechanistic reasons why commensal bacteria such as S. aureus cause disease. Therefore we examined in detail the evolutionary dynamics of normal, asymptomatic carriage. Sequencing a total of 131 genomes across 13 singly colonized hosts using the Illumina platform, we investigated diversity, selection, population dynamics and transmission during the short-term evolution of S. aureus. Principal Findings We characterized the processes by which the raw material for evolution is generated: micro-mutation (point mutation and small insertions/deletions), macro-mutation (large insertions/deletions) and the loss or acquisition of mobile elements (plasmids and bacteriophages). Through an analysis of synonymous, non-synonymous and intergenic mutations we discovered a fitness landscape dominated by purifying selection, with rare examples of adaptive change in genes encoding surface-anchored proteins and an enterotoxin. We found evidence for dramatic, hundred-fold fluctuations in the size of the within-host population over time, which we related to the cycle of colonization and clearance. Using a newly-developed population genetics approach to detect recent transmission among hosts, we revealed evidence for recent transmission between some of our subjects, including a husband and wife both carrying populations of methicillin-resistant S. aureus (MRSA). Significance This investigation begins to paint a picture of the within-host evolution of an important bacterial pathogen during its prevailing natural state, asymptomatic carriage. These results also have wider significance as a benchmark for future systematic studies of evolution during invasive S. aureus disease.
Resumo:
A series of 3-oxo-C12-HSL, tetramic acid and tetronic acid analogues was synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were non-competitive inhibitors of the auto-inducing peptide (AIP)-activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as negative allosteric modulators and are exemplified by 3-tetradecanoyltetronic acid 17 which reduced nasal cell colonization and arthritis in a murine infection model.
Resumo:
Brachyspira pilosicoli is a potentially zoonotic anaerobic intestinal spirochaete that is one of several species causing avian intestinal spirochaetosis. The aim of this study was to develop a reproducible model of infection in point-of-lay chickens and compare the virulence of two strains of B. pilosicoli in a model using experimentally challenged laying chickens. Seventeen-week-old commercial laying chickens were experimentally challenged by oral gavage with either B. pilosicoli strain B2904 or CPSp1, following an oral dose of 10 % sodium bicarbonate to neutralize acidity in the crop. Approximately 80 % of the chickens became colonized and exhibited increased faecal moisture content, reduced weight gain and delayed onset of lay. Tissues sampled at post-mortem examination were analysed to produce a quantitative output on the number of spirochaetes present and hence, the extent of colonization. The liver and spleen were colonized, and novel histopathology was observed in these tissues. The infection model we report here has potential use in studies to improve our understanding of the mechanisms by which Brachyspira elicit disease in poultry and in testing novel intervention strategies.
Resumo:
Avian intestinal spirochaetosis (AIS) results from the colonization of the caeca and colon of poultry by pathogenic Brachyspira, notably Brachyspira pilosicoli. Following the ban on the use of antibiotic growth promoters in the European Union in 2006, the number of cases of AIS has increased, which, alongside emerging antimicrobial resistance in Brachyspira, has driven renewed interest in alternative intervention strategies. Lactobacillus-based probiotics have been shown to protect against infection with common enteric pathogens in livestock. Our previous studies have shown that Lactobacillus reuteri LM1 antagonizes aspects of the pathobiology of Brachyspira in vitro. Here, we showed that L. reuteri LM1 mitigates the clinical symptoms of AIS in chickens experimentally challenged with B. pilosicoli. Two groups of 15 commercial laying hens were challenged experimentally by oral gavage with B. pilosicoli B2904 at 18 weeks of age; one group received unsupplemented drinking water and the other received L. reuteri LM1 in drinking water from 1 week prior to challenge with Brachyspira and thereafter for the duration of the study. This treatment regime was protective. Specifically, B. pilosicoli was detected by culture in fewer birds, bird weights were higher, faecal moisture contents were significantly lower (P<0.05) and egg production as assessed by egg weight and faecal staining score was improved (P<0.05). Also, at post-mortem examination, significantly fewer B. pilosicoli were recovered from treated birds (P<0.05), with only mild–moderate histopathological changes observed. These data suggest that L. reuteri LM1 may be a useful tool in the control of AIS.
Resumo:
Background—Probiotics are extensively used to promote gastrointestinal health and emerging evidence suggests that their beneficial properties can extend beyond the local environment of the gut. Here, we determined whether oral probiotic administration can alter the progression of post-infarction heart failure. Methods and Results—Rats were subjected to six weeks of sustained coronary artery occlusion and administered the probiotic Lactobacillus rhamnosus GR-1 or placebo in the drinking water ad libitum. Culture and 16s rRNA sequencing showed no evidence of GR-1 colonization or a significant shift in the composition of the cecal microbiome. However, animals administered GR-1 exhibited a significant attenuation of left ventricular hypertrophy based on tissue weight assessment as well as gene expression of atrial natriuretic peptide. Moreover, these animals demonstrated improved hemodynamic parameters reflecting both improved systolic and diastolic left ventricular function. Serial echocardiography revealed significantly improved left ventricular parameters throughout the six week follow-up period including a marked preservation of left ventricular ejection fraction as well as fractional shortening. Beneficial effects of GR-1 were still evident in those animals in which GR-1 was withdrawn at four weeks suggesting persistence of the GR-1 effects following cessation of therapy. Investigation of mechanisms showed a significant increase in the leptin to adiponectin plasma concentration ratio in rats subjected to coronary ligation which was abrogated by GR-1. Metabonomic analysis showed differences between sham control and coronary artery ligated hearts particularly with respect to preservation of myocardial taurine levels. Conclusions—The study suggests that probiotics offer promise as a potential therapy for the attenuation of heart failure.
Resumo:
Between the eleventh and thirteenth centuries AD, the Lower Vistula valley represented a permeable and shifting frontier between Pomerelia (eastern Pomerania), which had been incorporated into the Polish Christian state by the end of the tenth century, and the territories of western Prussian tribes, who had resisted attempts at Christianization. Pomeranian colonization eventually began to falter in the latter decades of the twelfth and early thirteenth centuries, most likely as a result of Prussian incursions, which saw the abandonment of sites across the borderland. Subsequently, the Teutonic Order and its allies led a protracted holy war against the Prussian tribes, which resulted in the conquest of the region and its incorporation into a theocratic state by the end of the thirteenth century. This was accompanied by a second wave of colonization, which resulted in the settlement pattern that is still visible in the landscape of north-central Poland today. However, not all colonies were destroyed or abandoned in between the two phases of colonization. The recently excavated site of Biała Góra, situated on the western side of the Forest of Sztum overlooking the River Nogat, represents a unique example of a transitional settlement that included both Pomeranian and Teutonic Order phases. The aim of this paper is to situate the site within its broader landscape context which can be characterized as a militarized frontier, where, from the later twelfth century and throughout much of the thirteenth century, political and economic expansion was combined with the ideology of Christian holy war and missionary activity. This paper considers how the colonists provisioned and sustained themselves in comparison to other sites within the region, and how Biała Góra may be tentatively linked to a documented but otherwise lost outpost in this volatile borderland.
Resumo:
Food security depends on enhancing production and reducing loss to pests and pathogens. A promising alternative to agrochemicals is the use of plant growth-promoting rhizobacteria (PGPR), which are commonly associated with many, if not all, plant species. However, exploiting the benefits of PGPRs requires knowledge of bacterial function and an in-depth understanding of plant-bacteria associations. Motility is important for colonization efficiency and microbial fitness in the plant environment, but the mechanisms employed by bacteria on and around plants are not well understood. We describe and investigate an atypical mode of motility in Pseudomonas fluorescens SBW25 that was revealed only after flagellum production was eliminated by deletion of the master regulator fleQ. Our results suggest that this ‘spidery spreading’ is a type of surface motility. Transposon mutagenesis of SBW25ΔfleQ (SBW25Q) produced mutants, defective in viscosin production, and surface spreading was also abolished. Genetic analysis indicated growth-dependency, production of viscosin, and several potential regulatory and secretory systems involved in the spidery spreading phenotype. Moreover, viscosin both increases efficiency of surface spreading over the plant root and protects germinating seedlings in soil infected with the plant pathogen Pythium. Thus, viscosin could be a useful target for biotechnological development of plant growth promotion agents.
Resumo:
There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.
Resumo:
Although premature infants are increasingly surviving the neonatal period, up to one-third develop bronchopulmonary dysplasia (BPD). Despite evidence that bacterial colonization of the neonatal respiratory tract by certain bacteria may be a risk factor in BPD development, little is known about the role these bacteria play. The aim of this study was to investigate the use of culture-independent molecular profiling methodologies to identify potential etiological agents in neonatal airway secretions. This study used terminal restriction fragment length polymorphism (T-RFLP) and clone sequence analyses to characterize bacterial species in endo-tracheal (ET) aspirates from eight intubated pre-term infants. A wide range of different bacteria was identified in the samples. Forty-seven T-RF band lengths were resolved in the sample set, with a range of 0-15 separate species in each patient. Clone sequence analyses confirmed the identity of individual species detected by T-RFLP. We speculate that the identification of known opportunistic pathogens including S. aureus, Enterobacter sp., Moraxella catarrhalis, Pseudomonas aeruginosa and Streptococcus sp., within the airways of pre-term infants, might be causally related to the subsequent development of BPD. Further, we suggest that culture-independent techniques, such as T-RFLP, hold important potential for the characterization of neonatal conditions, such as BPD.
Resumo:
Analysis of microbial gene expression during host colonization provides valuable information on the nature of interaction, beneficial or pathogenic, and the adaptive processes involved. Isolation of bacterial mRNA for in planta analysis can be challenging where host nucleic acid may dominate the preparation, or inhibitory compounds affect downstream analysis, e.g., quantitative reverse transcriptase PCR (qPCR), microarray, or RNA-seq. The goal of this work was to optimize the isolation of bacterial mRNA of food-borne pathogens from living plants. Reported methods for recovery of phytopathogen-infected plant material, using hot phenol extraction and high concentration of bacterial inoculation or large amounts of infected tissues, were found to be inappropriate for plant roots inoculated with Escherichia coli O157:H7. The bacterial RNA yields were too low and increased plant material resulted in a dominance of plant RNA in the sample. To improve the yield of bacterial RNA and reduce the number of plants required, an optimized method was developed which combines bead beating with directed bacterial lysis using SDS and lysozyme. Inhibitory plant compounds, such as phenolics and polysaccharides, were counteracted with the addition of high-molecular-weight polyethylene glycol and hexadecyltrimethyl ammonium bromide. The new method increased the total yield of bacterial mRNA substantially and allowed assessment of gene expression by qPCR. This method can be applied to other bacterial species associated with plant roots, and also in the wider context of food safety.
Resumo:
There has been an Irish presence within the Caribbean since at least the 1620s and yet the historical and cultural dimensions of this encounter remain relatively under-researched and are often conceived of in reductive terms by crude markers such as redlegs or poor whites. While there are some striking reminders of this hitory throughout the region, this collection explores how the complications and contradictions of Irish Caribbean relations are much richer and deeper than previously recognized. Caribbean Irish Connections makes an important contribution to Irish studies by challenging the dominance of a US diasporic history and a disciplinary focus on cultural continuity and ancestry. Likewise, within Caribbean studies, the Irish presence troubles the orthodox historical models for understanding race and the plantation, race and class structures, as well as questions of ethnic and religious minorities. The contributors emphasize the importance of understanding the transatlantic nexus between Ireland and the Caribbean in terms of the shared historical experiences of dislocation, diaspora and colonization, as well as of direct encounter. This collection pays tribute to the extraordinarily rich tradition of cultural expression that informs both cultures and their imagination of each other.
Resumo:
The exact pattern, process and timing of the human re-colonization of northern Europe after the end of the last Ice Age remain controversial. Recent research has provided increasingly early dates for at least pioneer explorations of latitudes above 54°N in many regions, yet the far north-west of the European landmass, Scotland, has remained an unexplained exception to this pattern. Although the recently described Hamburgian artefacts from Howburn and an assemblage belonging to the arch-backed point complex from Kilmelfort Cave have established at least a sporadic human presence during earlier stages of the Lateglacial Interstadial, we currently lack evidence for Younger Dryas/Greenland Stadial 1 (GS-1) activity other than rare stray finds that have been claimed to be of Ahrensburgian affiliation but are difficult to interpret in isolation. We here report the discovery of chipped stone artefacts with technological and typological characteristics similar to those of the continental Ahrensburgian at a locality in western Scotland. A preliminary analysis of associated tephra, pollen and phytoliths, along with microstratigraphic analysis, suggest the artefacts represent one or more episodes of human activity that fall within the second half of GS-1 and the Preboreal period
Resumo:
In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg−1 soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.