126 resultados para Coherent Vortices
Resumo:
Requirements analysis focuses on stakeholders concerns and their influence towards e-government systems. Some characteristics of stakeholders concerns clearly show the complexity and conflicts. This imposes a number of questions in the requirements analysis, such as how are they relevant to stakeholders? What are their needs? How conflicts among the different stakeholders can be resolved? And what coherent requirements can be methodologically produced? This paper describes the problem articulation method in organizational semiotics which can be used to conduct such complex requirements analysis. The outcomes of the analysis enable e-government systems development and management to meet userspsila needs. A case study of Yantai Citizen Card is chosen to illustrate a process of analysing stakeholders in the lifecycle of requirements analysis.
Resumo:
Information provision to address the changing requirements can be best supported by content management. The Current information technology enables information to be stored and provided from various distributed sources. To identify and retrieve relevant information requires effective mechanisms for information discovery and assembly. This paper presents a method, which enables the design of such mechanisms, with a set of techniques for articulating and profiling users' requirements, formulating information provision specifications, realising management of information content in repositories, and facilitating response to the user's requirements dynamically during the process of knowledge construction. These functions are represented in an ontology which integrates the capability of the mechanisms. The ontological modelling in this paper has adopted semiotics principles with embedded norms to ensure coherent course of actions represented in these mechanisms. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The relationship between tropical convection, surface fluxes, and sea surface temperature (SST) on intraseasonal timescales has been examined as part of an investigation of the possibility that the intraseasonal oscillation is a coupled atmosphere–ocean phenomenon. The unique feature of this study is that 15 yr of data and the whole region from the Indian Ocean to the Pacific Ocean have been analyzed using lag-correlation analysis and compositing techniques. A coherent relationship between convection, surface fluxes, and SST has been found on intraseasonal timescales in the Indian Ocean, Maritime Continent, and west Pacific regions of the Tropics. Prior to the maximum in convection, there are positive shortwave and latent heat flux anomalies into the surface, followed by warm SST anomalies about 10 days before the convective maximum. Coincident with the convective maximum, there is a minimum in the shortwave flux, followed by a cooling due to increased evaporation associated with enhanced westerly wind stress, leading to negative SST anomalies about 10 days after the convection. The relationships are robust from year to year, including both phases of the El Niño–Southern Oscillation (ENSO) although the eastward extent of the region over which the relationship holds varies with the phase of ENSO, consistent with the variations in the eastward extent of the warm pool and westerly winds. The spatial scale of the anomalies is about 60° longitude, consistent with the scale of the intraseasonal oscillation. The spatial and temporal characteristics of the surface flux and SST perturbations are consistent with the surface flux variations forcing the ocean, and the magnitudes of the anomalies are consistent with mixed-layer depths appropriate to the Indian Ocean and west Pacific
Resumo:
Temporal discounting (TD) matures with age, alongside other markers of increased impulse control, and coherent, self-regulated behaviour. Discounting paradigms quantify the ability to refrain from preference of immediate rewards, in favour of delayed, larger rewards. As such, they measure temporal foresight and the ability to delay gratification, functions that develop slowly into adulthood. We investigated the neural maturation that accompanies the previously observed age-related behavioural changes in discounting, from early adolescence into mid-adulthood. We used functional magnetic resonance imaging of a hypothetical discounting task with monetary rewards delayed in the week to year range. We show that age-related reductions in choice impulsivity were associated with changes in activation in ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), ventral striatum (VS), insula, inferior temporal gyrus, and posterior parietal cortex. Limbic frontostriatal activation changes were specifically associated with age-dependent reductions in impulsive choice, as part of a more extensive network of brain areas showing age-related changes in activation, including dorsolateral PFC, inferior parietal cortex, and subcortical areas. The maturational pattern of functional connectivity included strengthening in activation coupling between ventromedial and dorsolateral PFC, parietal and insular cortices during selection of delayed alternatives, and between vmPFC and VS during selection of immediate alternatives. We conclude that maturational mechanisms within limbic frontostriatal circuitry underlie the observed post-pubertal reductions in impulsive choice with increasing age, and that this effect is dependent on increased activation coherence within a network of areas associated with discounting behaviour and inter-temporal decision-making.
Resumo:
The Stokes drift induced by surface waves distorts turbulence in the wind-driven mixed layer of the ocean, leading to the development of streamwise vortices, or Langmuir circulations, on a wide range of scales. We investigate the structure of the resulting Langmuir turbulence, and contrast it with the structure of shear turbulence, using rapid distortion theory (RDT) and kinematic simulation of turbulence. Firstly, these linear models show clearly why elongated streamwise vortices are produced in Langmuir turbulence, when Stokes drift tilts and stretches vertical vorticity into horizontal vorticity, whereas elongated streaky structures in streamwise velocity fluctuations (u) are produced in shear turbulence, because there is a cancellation in the streamwise vorticity equation and instead it is vertical vorticity that is amplified. Secondly, we develop scaling arguments, illustrated by analysing data from LES, that indicate that Langmuir turbulence is generated when the deformation of the turbulence by mean shear is much weaker than the deformation by the Stokes drift. These scalings motivate a quantitative RDT model of Langmuir turbulence that accounts for deformation of turbulence by Stokes drift and blocking by the air–sea interface that is shown to yield profiles of the velocity variances in good agreement with LES. The physical picture that emerges, at least in the LES, is as follows. Early in the life cycle of a Langmuir eddy initial turbulent disturbances of vertical vorticity are amplified algebraically by the Stokes drift into elongated streamwise vortices, the Langmuir eddies. The turbulence is thus in a near two-component state, with suppressed and . Near the surface, over a depth of order the integral length scale of the turbulence, the vertical velocity (w) is brought to zero by blocking of the air–sea interface. Since the turbulence is nearly two-component, this vertical energy is transferred into the spanwise fluctuations, considerably enhancing at the interface. After a time of order half the eddy decorrelation time the nonlinear processes, such as distortion by the strain field of the surrounding eddies, arrest the deformation and the Langmuir eddy decays. Presumably, Langmuir turbulence then consists of a statistically steady state of such Langmuir eddies. The analysis then provides a dynamical connection between the flow structures in LES of Langmuir turbulence and the dominant balance between Stokes production and dissipation in the turbulent kinetic energy budget, found by previous authors.
Resumo:
A physiological experiment was carried out in a naturally ventilated, non-HVAC indoor environment of a spacious experimental room. More than 300 healthy university students volunteered for this study. The purpose of the study was to investigate the human physiological indicators which could be used to characterise the indoor operative temperature changes in a building and their impact on human thermal comfort based on the different climatic characteristics people would experience in Chongqing, China. The study found that sensory nerve conduction velocity (SCV) could objectively provide a good indicator for assessment of the human response to changes in indoor operative temperatures in a naturally ventilated situation. The results showed that with the changes in the indoor operative temperatures, the changing trend in the nerve conduction velocity was basically the same as that of the skin temperature at the sensory nerve measuring segment (Tskin(scv)). There was good coherent consistency among the factors: indoor operative temperature, SCV and Tskin(scv) in a certain indoor operative temperature range. Through self-adaptation and self-feedback regulation, the human physiological indicators would produce certain adaptive changes to deal with the changes in indoor operative temperature. The findings of this study should provide the baseline data to inform guidelines for the development of thermal environment-related standards that could contribute to efficient use of energy in buildings in China.
Resumo:
Recent theories propose that semantic representation and sensorimotor processing have a common substrate via simulation. We tested the prediction that comprehension interacts with perception, using a standard psychophysics methodology.While passively listening to verbs that referred to upward or downward motion, and to control verbs that did not refer to motion, 20 subjects performed a motion-detection task, indicating whether or not they saw motion in visual stimuli containing threshold levels of coherent vertical motion. A signal detection analysis revealed that when verbs were directionally incongruent with the motion signal, perceptual sensitivity was impaired. Word comprehension also affected decision criteria and reaction times, but in different ways. The results are discussed with reference to existing explanations of embodied processing and the potential of psychophysical methods for assessing interactions between language and perception.
Resumo:
Infant survival and the development of secure and cooperative relationships are central to the future of the species. In humans, this relies heavily on the evolving early parent–infant social and affective relationship. While much is known about the behavioural and psychological components of this relationship, relatively little is known about the underlying functional neuroanatomy. Affective and social neuroscience has helped to describe the main adult brain networks involved, but has so far engaged very little with developmental findings. In this review, we seek to highlight future avenues for research by providing a coherent framework for describing the parent–infant relationship over the first 18 months. We provide an outline of the evolving nature of the relationship, starting with basic orienting and recognition processes, and culminating in the infant's attainment of higher socio-emotional and cognitive capacities. Key social and affective interactions, such as communication, cooperative play and the establishment of specific attachments propel the development of the parent–infant relationship. We summarise our current knowledge of the developing infant brain in terms of structure and function, and how these relate to the emergent abilities necessary for the formation of a secure and cooperative relationship with parents or other caregivers. Important roles have been found for brain regions including the orbitofrontal, cingulate, and insular cortices in parent–infant interactions, but it has become clear that much more information is needed about the developmental time course and connectivity of these regions.
Resumo:
The polar winter stratospheric vortex is a coherent structure that undergoes different types of deformation that can be revealed by the geometric invariant moments. Three moments are used—the aspect ratio, the centroid latitude, and the area of the vortex based on stratospheric data from the 40-yr ECMWF Re-Analysis (ERA-40) project—to study sudden stratospheric warmings. Hierarchical clustering combined with data image visualization techniques is used as well. Using the gap statistic, three optimal clusters are obtained based on the three geometric moments considered here. The 850-K potential vorticity field, as well as the vertical profiles of polar temperature and zonal wind, provides evidence that the clusters represent, respectively, the undisturbed (U), displaced (D), and split (S) states of the polar vortex. This systematic method for identifying and characterizing the state of the polar vortex using objective methods is useful as a tool for analyzing observations and as a test for climate models to simulate the observations. The method correctly identifies all previously identified major warmings and also identifies significant minor warmings where the atmosphere is substantially disturbed but does not quite meet the criteria to qualify as a major stratospheric warming.
Resumo:
Multi-rate multicarrier DS/CDMA is a potentially attractive multiple access method for future wireless communications networks that must support multimedia, and thus multi-rate, traffic. Several receiver structures exist for single-rate multicarrier systems, but little has been reported on multi-rate multicarrier systems. Considering that high-performance detection such as coherent demodulation needs the explicit knowledge of the channel, based on the finite-length chip waveform truncation, this paper proposes a subspace-based scheme for timing and channel estimation in multi-rate multicarrier DS/CDMA systems, which is applicable to both multicode and variable spreading factor systems. The performance of the proposed scheme for these two multi-rate systems is validated via numerical simulations. The effects of the finite-length chip waveform truncation on the performance of the proposed scheme is also analyzed theoretically.
Resumo:
Little has so far been reported on the performance of the near-far resistant CDMA detectors in the presence of the synchronization errors. Starting with the general mathematical model of matched filters, this paper examines the effects of three classes of synchronization errors (i.e. time-delay errors, carrier phase errors, and carrier frequency errors) on the performance (bit error rate and near-far resistance) of an emerging type of near-far resistant coherent DS/SSMA detectors, i.e. the linear decorrelating detector (LDD). For comparison, the corresponding results for the conventional detector are also presented. It is shown that the LDD can still maintain a considerable performance advantage over the conventional detector even when some synchronization errors exist. Finally, several computer simulations are carried out to verify the theoretical conclusions.
Resumo:
Multi-rate multicarrier DS-CDMA is a potentially attractive multiple access method for future wireless networks that must support multimedia, and thus multi-rate, traffic. Considering that high performance detection such as coherent demodulation needs the explicit knowledge of the channel, this paper proposes a subspace-based blind adaptive algorithm for timing acquisition and channel estimation in asynchronous multirate multicarrier DS-CDMA systems, which is applicable to both multicode and variable spreading factor systems.
Resumo:
Latin had no word for "strategy", but the East Romans, whom we call the Byzantines, did. This book tracks the evolution of the concept of warfare being subjected to higher political aims from Antiquity to the Present, using Greek, Latin, French, Spanish, Italian, English and German sources. It tracks the rise, fall, and resurrection of the belief in the Roman and later the medieval and early modern world that warfare was only legitimate if it pursued the higher goal of a just peace, which in the 19th century gave way to a blinkered concentration on military victory as only war aim. It explains why one school of thought, from Antiquity to the present, emphasised eternal principles of warfare, while others emphasised, in Clausewitz's term, the "changing character of war". It tracks ideas from land warfare to naval warfare to air power and nuclear thinking, but it also stresses great leaps and discontinuities in thinking about strategy. It covers asymmetric wars both from the point of view of the weaker power seeking to overthrow a stronger power, and from the stronger power dealing with insurgents and other numerically inferior forces. It concludes with a commentary of the long-known problems of bureaucratic politics, non-centralised command and inter-service rivalry, which since the 16th century or earlier has created obstacles to coherent strategy making.
Resumo:
Techniques for the coherent generation and detection of electromagnetic radiation in the far infrared, or terahertz, region of the electromagnetic spectrum have recently developed rapidly and may soon be applied for in vivo medical imaging. Both continuous wave and pulsed imaging systems are under development, with terahertz pulsed imaging being the more common method. Typically a pump and probe technique is used, with picosecond pulses of terahertz radiation generated from femtosecond infrared laser pulses, using an antenna or nonlinear crystal. After interaction with the subject either by transmission or reflection, coherent detection is achieved when the terahertz beam is combined with the probe laser beam. Raster scanning of the subject leads to an image data set comprising a time series representing the pulse at each pixel. A set of parametric images may be calculated, mapping the values of various parameters calculated from the shape of the pulses. A safety analysis has been performed, based on current guidelines for skin exposure to radiation of wavelengths 2.6 µm–20 mm (15 GHz–115 THz), to determine the maximum permissible exposure (MPE) for such a terahertz imaging system. The international guidelines for this range of wavelengths are drawn from two U.S. standards documents. The method for this analysis was taken from the American National Standard for the Safe Use of Lasers (ANSI Z136.1), and to ensure a conservative analysis, parameters were drawn from both this standard and from the IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields (C95.1). The calculated maximum permissible average beam power was 3 mW, indicating that typical terahertz imaging systems are safe according to the current guidelines. Further developments may however result in systems that will exceed the calculated limit. Furthermore, the published MPEs for pulsed exposures are based on measurements at shorter wavelengths and with pulses of longer duration than those used in terahertz pulsed imaging systems, so the results should be treated with caution.
Resumo:
Little has been reported on the performance of near-far resistant CDMA detectors in the presence of system parameter estimation errors (SPEEs). Starting with the general mathematical model of matched filters, the paper examines the effects of three classes of SPEEs, i.e., time-delay, carrier phase, and carrier frequency errors, on the performance (BER) of an emerging type of near-far resistant coherent DS/SSMA detector, i.e., the linear decorrelating detector. For comparison, the corresponding results for the conventional detector are also presented. It is shown that the linear decorrelating detector can still maintain a considerable performance advantage over the conventional detector even when some SPEEs exist.