83 resultados para Cech-Complete Spaces
Resumo:
We study the dynamical properties of certain shift spaces. To help study these properties we introduce two new classes of shifts, namely boundedly supermultiplicative (BSM) shifts and balanced shifts. It turns out that any almost specified shift is both BSM and balanced, and any balanced shift is BSM. However, as we will demonstrate, there are examples of shifts which are BSM but not balanced. We also study the measure theoretic properties of balanced shifts. We show that a shift space admits a Gibbs state if and only if it is balanced. Restricting ourselves to S-gap shifts, we relate certain dynamical properties of an S-gap shift to combinatorial properties from expansions in non-integer bases. This identification allows us to use the machinery from expansions in non-integer bases to give straightforward constructions of S -gap shifts with certain desirable properties. We show that for any q∈(0,1) there is an S-gap shift which has the specification property and entropy q . We also use this identification to address the question, for a given q∈(0,1), how many S-gap shifts exist with entropy q? For certain exceptional values of q there is a unique S-gap shift with this entropy.
Resumo:
Discusses how the painters of the Royal Tapestry Factory of Santa Barbara in Madrid depicted the new social spaces of the capital in the cartoons designed to be turned into tapestries for Royal apartments. The cultural and sociological role of the 'paseo' or 'promenade' is also considered.
Resumo:
Nonlinear data assimilation is high on the agenda in all fields of the geosciences as with ever increasing model resolution and inclusion of more physical (biological etc.) processes, and more complex observation operators the data-assimilation problem becomes more and more nonlinear. The suitability of particle filters to solve the nonlinear data assimilation problem in high-dimensional geophysical problems will be discussed. Several existing and new schemes will be presented and it is shown that at least one of them, the Equivalent-Weights Particle Filter, does indeed beat the curse of dimensionality and provides a way forward to solve the problem of nonlinear data assimilation in high-dimensional systems.
Resumo:
We study Toeplitz operators on the Besov spaces in the case of the open unit disk. We prove that a symbol satisfying a weak Lipschitz type condition induces a bounded Toeplitz operator. Such symbols do not need to be bounded functions or have continuous extensions to the boundary of the open unit disk. We discuss the problem of the existence of nontrivial compact Toeplitz operators, and also consider Fredholm properties and prove an index formula.
Resumo:
In this paper we characterize the Schatten p class membership of Toeplitz operators with positive measure symbols acting on generalized Fock spaces for the full range p>0.