86 resultados para CORRELATED CALCULATIONS
Cross-layer design for MIMO systems over spatially correlated and keyhole Nakagami-m fading channels
Resumo:
Cross-layer design is a generic designation for a set of efficient adaptive transmission schemes, across multiple layers of the protocol stack, that are aimed at enhancing the spectral efficiency and increasing the transmission reliability of wireless communication systems. In this paper, one such cross-layer design scheme that combines physical layer adaptive modulation and coding (AMC) with link layer truncated automatic repeat request (T-ARQ) is proposed for multiple-input multiple-output (MIMO) systems employing orthogonal space--time block coding (OSTBC). The performance of the proposed cross-layer design is evaluated in terms of achievable average spectral efficiency (ASE), average packet loss rate (PLR) and outage probability, for which analytical expressions are derived, considering transmission over two types of MIMO fading channels, namely, spatially correlated Nakagami-m fading channels and keyhole Nakagami-m fading channels. Furthermore, the effects of the maximum number of ARQ retransmissions, numbers of transmit and receive antennas, Nakagami fading parameter and spatial correlation parameters, are studied and discussed based on numerical results and comparisons. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
In this paper, we consider multiple-input multiple- output (MIMO) maximal ratio combining (MRC) systems and assess the system performance in terms of average symbol error probability (SEP), outage probability and ergodic capacity in double-correlated Rayleigh-and-Lognormal fading channels. In order to derive the receive and transmit correlation functions needed for the performance analysis, a three-dimensional (3D) MIMO mobile-to-mobile (M-to-M) channel model, which takes into account the effects of fast fading and shadowing is used. Numerical results are provided to show the effects of system parameters, such as maximum elevation angle of scatterers, orientation angle of antenna array in the x-y plane, angle between x-y plane and the antenna array orientation, and degree of scattering in the x-y plane, on the system performance.
Resumo:
There are now many reports of imaging experiments with small cohorts of typical participants that precede large-scale, often multicentre studies of psychiatric and neurological disorders. Data from these calibration experiments are sufficient to make estimates of statistical power and predictions of sample size and minimum observable effect sizes. In this technical note, we suggest how previously reported voxel-based power calculations can support decision making in the design, execution and analysis of cross-sectional multicentre imaging studies. The choice of MRI acquisition sequence, distribution of recruitment across acquisition centres, and changes to the registration method applied during data analysis are considered as examples. The consequences of modification are explored in quantitative terms by assessing the impact on sample size for a fixed effect size and detectable effect size for a fixed sample size. The calibration experiment dataset used for illustration was a precursor to the now complete Medical Research Council Autism Imaging Multicentre Study (MRC-AIMS). Validation of the voxel-based power calculations is made by comparing the predicted values from the calibration experiment with those observed in MRC-AIMS. The effect of non-linear mappings during image registration to a standard stereotactic space on the prediction is explored with reference to the amount of local deformation. In summary, power calculations offer a validated, quantitative means of making informed choices on important factors that influence the outcome of studies that consume significant resources.
Resumo:
Radar refractivity retrievals have the potential to accurately capture near-surface humidity fields from the phase change of ground clutter returns. In practice, phase changes are very noisy and the required smoothing will diminish large radial phase change gradients, leading to severe underestimates of large refractivity changes (ΔN). To mitigate this, the mean refractivity change over the field (ΔNfield) must be subtracted prior to smoothing. However, both observations and simulations indicate that highly correlated returns (e.g., when single targets straddle neighboring gates) result in underestimates of ΔNfield when pulse-pair processing is used. This may contribute to reported differences of up to 30 N units between surface observations and retrievals. This effect can be avoided if ΔNfield is estimated using a linear least squares fit to azimuthally averaged phase changes. Nevertheless, subsequent smoothing of the phase changes will still tend to diminish the all-important spatial perturbations in retrieved refractivity relative to ΔNfield; an iterative estimation approach may be required. The uncertainty in the target location within the range gate leads to additional phase noise proportional to ΔN, pulse length, and radar frequency. The use of short pulse lengths is recommended, not only to reduce this noise but to increase both the maximum detectable refractivity change and the number of suitable targets. Retrievals of refractivity fields must allow for large ΔN relative to an earlier reference field. This should be achievable for short pulses at S band, but phase noise due to target motion may prevent this at C band, while at X band even the retrieval of ΔN over shorter periods may at times be impossible.
Resumo:
Positive-stranded viruses synthesize their RNA in membrane-bound organelles, but it is not clear how this benefits the virus or the host. For coronaviruses, these organelles take the form of double-membrane vesicles (DMVs) interconnected by a convoluted membrane network. We used electron microscopy to identify murine coronaviruses with mutations in nsp3 and nsp14 that replicated normally while producing only half the normal amount of DMVs. Viruses with mutations in nsp5 and nsp16 produced small DMVs but also replicated normally. Quantitative RT-PCR confirmed that the most strongly affected of these, the nsp3 mutant, produced more viral RNA than wild-type virus. Competitive growth assays were carried out in both continuous and primary cells to better understand the contribution of DMVs to viral fitness. Surprisingly, several viruses that produced fewer or smaller DMVs showed a higher relative fitness compared to wild-type virus, suggesting that larger and more numerous DMVs do not necessarily confer a competitive advantage in primary or continuous cell culture. For the first time, this directly demonstrates that replication and organelle formation may be, at least in part, studied separately during positive-stranded RNA virus infection.
Resumo:
For certain observing types, such as those that are remotely sensed, the observation errors are correlated and these correlations are state- and time-dependent. In this work, we develop a method for diagnosing and incorporating spatially correlated and time-dependent observation error in an ensemble data assimilation system. The method combines an ensemble transform Kalman filter with a method that uses statistical averages of background and analysis innovations to provide an estimate of the observation error covariance matrix. To evaluate the performance of the method, we perform identical twin experiments using the Lorenz ’96 and Kuramoto-Sivashinsky models. Using our approach, a good approximation to the true observation error covariance can be recovered in cases where the initial estimate of the error covariance is incorrect. Spatial observation error covariances where the length scale of the true covariance changes slowly in time can also be captured. We find that using the estimated correlated observation error in the assimilation improves the analysis.
Resumo:
Calculations using a numerical model of the convection dominated high latitude ionosphere are compared with observations made by EISCAT as part of the UK-POLAR Special Programme. The data used were for 24–25 October 1984, which was characterized by an unusually steady IMF, with Bz < 0 and By > 0; in the calculations it was assumed that a steady IMF implies steady convection conditions. Using the electric field models of Heppner and Maynard (1983) appropriate to By > 0 and precipitation data taken from Spiroet al. (1982), we calculated the velocities and electron densities appropriate to the EISCAT observations. Many of the general features of the velocity data were reproduced by the model. In particular, the phasing of the change from eastward to westward flow in the vicinity of the Harang discontinuity, flows near the dayside throat and a region of slow flow at higher latitudes near dusk were well reproduced. In the afternoon sector modelled velocity values were significantly less than those observed. Electron density calculations showed good agreement with EISCAT observations near the F-peak, but compared poorly with observations near 211 km. In both cases, the greatest disagreement occurred in the early part of the observations, where the convection pattern was poorly known and showed some evidence of long term temporal change. Possible causes for the disagreement between observations and calculations are discussed and shown to raise interesting and, as yet, unresolved questions concerning the interpretation of the data. For the data set used, the late afternoon dip in electron density observed near the F-peak and interpreted as the signature of the mid-latitude trough is well reproduced by the calculations. Calculations indicate that it does not arise from long residence times of plasma on the nightside, but is the signature of a gap between two major ionization sources, viz. photoionization and particle precipitation.
Resumo:
The high computational cost of calculating the radiative heating rates in numerical weather prediction (NWP) and climate models requires that calculations are made infrequently, leading to poor sampling of the fast-changing cloud field and a poor representation of the feedback that would occur. This paper presents two related schemes for improving the temporal sampling of the cloud field. Firstly, the ‘split time-stepping’ scheme takes advantage of the independent nature of the monochromatic calculations of the ‘correlated-k’ method to split the calculation into gaseous absorption terms that are highly dependent on changes in cloud (the optically thin terms) and those that are not (optically thick). The small number of optically thin terms can then be calculated more often to capture changes in the grey absorption and scattering associated with cloud droplets and ice crystals. Secondly, the ‘incremental time-stepping’ scheme uses a simple radiative transfer calculation using only one or two monochromatic calculations representing the optically thin part of the atmospheric spectrum. These are found to be sufficient to represent the heating rate increments caused by changes in the cloud field, which can then be added to the last full calculation of the radiation code. We test these schemes in an operational forecast model configuration and find a significant improvement is achieved, for a small computational cost, over the current scheme employed at the Met Office. The ‘incremental time-stepping’ scheme is recommended for operational use, along with a new scheme to correct the surface fluxes for the change in solar zenith angle between radiation calculations.
Resumo:
Background We investigated interacting effects of matric potential and soil strength on root elongation of maize and lupin, and relations between root elongation rates and the length of bare (hairless) root apex. Methods Root elongation rates and the length of bare root apexwere determined formaize and lupin seedlings in sandy loam soil of various matric potentials (−0.01 to −1.6 MPa) and bulk densities (0.9 to 1.5 Mg m−3). Results Root elongation rates slowed with both decreasing matric potential and increasing penetrometer resistance. Root elongation of maize slowed to 10 % of the unimpeded rate when penetrometer resistance increased to 2 MPa, whereas lupin elongated at about 40 % of the unimpeded rate. Maize root elongation rate was more sensitive to changes in matric potential in loosely packed soil (penetrometer resistances <1 MPa) than lupin. Despite these differing responses, root elongation rate of both species was linearly correlated with length of the bare root apex (r2 0.69 to 0.97). Conclusion Maize root elongation was more sensitive to changes in matric potential and mechanical impedance than lupin. Robust linear relationships between elongation rate and length of bare apex suggest good potential for estimating root elongation rates for excavated roots.
Resumo:
This work describes syntheses and electrochemical, spectroscopic, and bonding properties in a new series of dinuclear ruthenium(II) complexes bridged by polyaromatic (biphenyl, fluorene, phenanthrene, and pyrene) alkynyl ligands. Longitudinal expansion of the π-conjugated polyaromatic core of the bridging ligands caused a reduced potential difference between the anodic steps and reinforced their bridge-localized nature, as evidenced by UV/vis/near-IR and IR spectroelectrochemical data combined with DFT and TDDFT calculations. Importantly, the intricate multiple IR ν(CC) absorption bands for the singly oxidized states imply a thermal population of a range of conformers (rotamers) with distinct electronic character. This behavior was demonstrated with more accurate DFT calculations of selected nontruncated 1e− oxidized complexes in three different conformations. The combined experimental and theoretical data reveal that thermally populated rotamers featuring various mutual orientations of the ligated metal termini and the bridging diethynyl polyaromatic moieties have a significant impact on the electronic absorption and ν(CC) wavenumbers of the singly oxidized systems.
Resumo:
Many studies have aimed to identify common predictors of successful introductions of alien species, but the search has had limited success, particularly for animals. Past research focused primarily on mean trait values, even though genetic and phenotypic variation has been shown to play a role in establishment success in plants and some animals (mostly invertebrates). Using a global database describing 511 introduction events representing 97 mammalian species, we show that intraspecific variation in morphological traits is associated with establishment success, even when controlling for the positive effect of propagule pressure. In particular, greater establishment success is associated with more variation in adult body size but, surprisingly, less variation in neonate body size, potentially reflecting distinct trade-offs and constraints that influence population dynamics differently. We find no mean trait descriptors associated with establishment success, although species occupying wider native distribution ranges (which likely have larger niches) are more successful. Our results emphasize the importance of explicitly considering intraspecific variation to predict establishment success in animal species and generally to understand population dynamics. This understanding might improve management of alien species and increase the success of intentional releases, for example, for biocontrol or reintroductions.