87 resultados para Boundary Value Problems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider one-dimensional diffusions with constant coefficients in a finite interval with jump boundary and a certain deterministic jump distribution. We use coupling methods in order to identify the spectral gap in the case of a large drift and prove that there is a threshold drift above which the bottom of the spectrum no longer depends on the drift. As a corollary to our result we are able to answer two questions concerning elliptic eigenvalue problems with non-local boundary conditions formulated previously by Iddo Ben-Ari and Ross Pinsky.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops a conceptual framework for analyzing emerging agricultural hydrology problems in post-conflict Libya. Libya is one of the most arid regions on the planet. Thus, as well as substantial political and social changes, post-conflict Libyan administrators are confronted with important hydrological issues in Libya’s emerging water-landuse complex. This paper presents a substantial background to the water-land-use problem in Libya; reviews previous work in Libya and elsewhere on water-land-use issues and water-land-use conflicts in the dry and arid zones; outlines a conceptual framework for fruitful research interventions; and details the results of a survey conducted on Libyan farmers’ water usage, perceptions of emerging water-land-use conflicts and the appropriate value one should place on agricultural-use hydrological resources in Libya. Extensions are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we use molecular dynamics to answer a classical question: how does the surface tension on a liquid/gas interface appear? After defining surface tension from the first principles and performing several consistency checks, we perform a dynamic experiment with a single simple liquid nanodroplet. At time zero, we remove all molecules of the interfacial layer of molecules, creating a fresh bare interface with the bulk arrangement of molecules. After that the system evolves towards equilibrium, and the expected surface tension is re-established. We found that the system relaxation consists of three distinct stages. First, the mechanical balance is quickly re-established. During this process the notion of surface tension is meaningless. In the second stage, the surface tension equilibrates, and the density profile broadens to a value which we call “intrinsic” interfacial width. During the third stage, the density profile continues to broaden due to capillary wave excitations, which does not however affect the surface tension.We have observed this scenario for monatomic Lennard-Jones (LJ) liquid as well as for binary LJ mixtures at different temperatures, monitoring a wide range of physical observables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – This paper summarises the main research findings from a detailed, qualitative set of structured interviews and case studies of private finance initiative (PFI) schemes in the UK, which involve the construction of built facilities. The research, which was funded by the Foundation for the Built Environment, examines the emergence of PFI in the UK. Benefits and problems in the PFI process are investigated. Best practice, the key critical factors for success, and lessons for the future are also analysed. Design/methodology/approach – The research is based around 11 semi-structured interviews conducted with stakeholders in key PFI projects in the UK. Findings – The research demonstrates that value for money and risk transfer are key success criteria. High procurement and transaction costs are a feature of PFI projects, and the large-scale nature of PFI projects frequently acts as barrier to entry. Research limitations/implications – The research is based on a limited number of in-depth case study interviews. The paper also shows that further research is needed to find better ways to measure these concepts empirically. Practical implications – The paper is important in highlighting four main areas of practical improvement in the PFI process: value for money assessment; establishing end-user needs; developing competitive markets and developing appropriate skills in the public sector. Originality/value – The paper examines the drivers, barriers and critical success factors for PFI in the UK for the first time in detail and will be of value to property investors, financiers, and others involved in the PFI process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose and analyze a hybrid $hp$ boundary element method for the solution of problems of high frequency acoustic scattering by sound-soft convex polygons, in which the approximation space is enriched with oscillatory basis functions which efficiently capture the high frequency asymptotics of the solution. We demonstrate, both theoretically and via numerical examples, exponential convergence with respect to the order of the polynomials, moreover providing rigorous error estimates for our approximations to the solution and to the far field pattern, in which the dependence on the frequency of all constants is explicit. Importantly, these estimates prove that, to achieve any desired accuracy in the computation of these quantities, it is sufficient to increase the number of degrees of freedom in proportion to the logarithm of the frequency as the frequency increases, in contrast to the at least linear growth required by conventional methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction field is dynamic and dominated by complex, ill-defined problems for which myriad possible solutions exist. Teaching students to solve construction-related problems requires an understanding of the nature of these complex problems as well as the implementation of effective instructional strategies to address them. Traditional approaches to teaching construction planning and management have long been criticized for presenting students primarily with well-defined problems - an approach inconsistent with the challenges encountered in the industry. However, growing evidence suggests that employing innovative teaching approaches, such as interactive simulation games, offers more active, hands-on and problem-based learning opportunities for students to synthesize and test acquired knowledge more closely aligned with real-life construction scenarios. Simulation games have demonstrated educational value in increasing student problem solving skills and motivation through critical attributes such as interaction and feedback-supported active learning. Nevertheless, broad acceptance of simulation games in construction engineering education remains limited. While recognizing benefits, research focused on the role of simulation games in educational settings lacks a unified approach to developing, implementing and evaluating these games. To address this gap, this paper provides an overview of the challenges associated with evaluating the effectiveness of simulation games in construction education that still impede their wide adoption. An overview of the current status, as well as the results from recently implemented Virtual Construction Simulator (VCS) game at Penn State provide lessons learned, and are intended to guide future efforts in developing interactive simulation games to reach their full potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modelling system consists of the following: (1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor–outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, (2) coupling to fine-scale computational fluid dynamic Reynolds-averaged Navier–Stokes and Large-Eddy simulation models for transport and dispersion (T&D) applications, (3) procedures to incorporate high-resolution urban land use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and (4) an urbanized high-resolution land data assimilation system. This paper provides an overview of this modelling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary-layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modelling system illustrate its promising utility, as a regional climate-modelling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios. Copyright © 2010 Royal Meteorological Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose and analyse a hybrid numerical-asymptotic boundary element method for the solution of problems of high frequency acoustic scattering by a class of sound-soft nonconvex polygons. The approximation space is enriched with carefully chosen oscillatory basis functions; these are selected via a study of the high frequency asymptotic behaviour of the solution. We demonstrate via a rigorous error analysis, supported by numerical examples, that to achieve any desired accuracy it is sufficient for the number of degrees of freedom to grow only in proportion to the logarithm of the frequency as the frequency increases, in contrast to the at least linear growth required by conventional methods. This appears to be the first such numerical analysis result for any problem of scattering by a nonconvex obstacle. Our analysis is based on new frequency-explicit bounds on the normal derivative of the solution on the boundary and on its analytic continuation into the complex plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polar cap boundary is a subject of central importance to current magnetosphere-ionosphere research and its applications in “space weather” activities. The problems are that it has a number of definitions, and that the most physically meaningful definition (namely the open-closed field line boundary) is very difficult to identify in observations. New understanding of the importance of the structure and dynamics of the boundary region made the time right for a meeting reviewing our knowledge in this area. The Advanced Study Institute (ASI) on Svalbard in June 1997 discussed the boundary on both the dayside and the nightside, mapping magnetically to the dayside magnetopause and to tail plasma sheet/lobe interface, respectively. We held a “brainstorming” session, in which different ideas which arose from the presented papers were discussed and developed, and a summary session, in which session convenors gave a personal view of progress that has been made and problems which still need solving. Both were designed as ways of promoting further discussion. This paper attempts to distil some of the themes that emerged from these discussions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000–2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October–January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo–Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this work is the efficient solution of the heat equation with Dirichlet or Neumann boundary conditions using the Boundary Elements Method (BEM). Efficiently solving the heat equation is useful, as it is a simple model problem for other types of parabolic problems. In complicated spatial domains as often found in engineering, BEM can be beneficial since only the boundary of the domain has to be discretised. This makes BEM easier than domain methods such as finite elements and finite differences, conventionally combined with time-stepping schemes to solve this problem. The contribution of this work is to further decrease the complexity of solving the heat equation, leading both to speed gains (in CPU time) as well as requiring smaller amounts of memory to solve the same problem. To do this we will combine the complexity gains of boundary reduction by integral equation formulations with a discretisation using wavelet bases. This reduces the total work to O(h