136 resultados para Boneh-Boyen Signatures
Resumo:
The formation of Christendom – of Europe – was associated with a standardized worldview expressing dominion over the natural world. While some sections of medieval society, specifically monasteries and the aristocratic class, appear to have developed this paradigm, there is also evidence for heterogeneity in practice and belief. Zooarchaeologists have accumulated vast quantities of data from medieval contexts which has enabled the ecological signatures of specific social groups to be identified, and how these developed from the latter centuries of the first millennium ad. It is possible from this to consider whether trends in animal exploitation can be associated with the Christian world view of dominion, and with the very idea of what it meant to be Christian. This may enable zooarchaeologists to situate the ecological trends of the Middle Ages within the context of Europeanization, and the consolidation of a Christian society.
Resumo:
Cloud imagery is not currently used in numerical weather prediction (NWP) to extract the type of dynamical information that experienced forecasters have extracted subjectively for many years. For example, rapidly developing mid-latitude cyclones have characteristic signatures in the cloud imagery that are most fully appreciated from a sequence of images rather than from a single image. The Met Office is currently developing a technique to extract dynamical development information from satellite imagery using their full incremental 4D-Var (four-dimensional variational data assimilation) system. We investigate a simplified form of this technique in a fully nonlinear framework. We convert information on the vertical wind field, w(z), and profiles of temperature, T(z, t), and total water content, qt (z, t), as functions of height, z, and time, t, to a single brightness temperature by defining a 2D (vertical and time) variational assimilation testbed. The profiles of w, T and qt are updated using a simple vertical advection scheme. We define a basic cloud scheme to obtain the fractional cloud amount and, when combined with the temperature field, we convert this information into a brightness temperature, having developed a simple radiative transfer scheme. With the exception of some matrix inversion routines, all our code is developed from scratch. Throughout the development process we test all aspects of our 2D assimilation system, and then run identical twin experiments to try and recover information on the vertical velocity, from a sequence of observations of brightness temperature. This thesis contains a comprehensive description of our nonlinear models and assimilation system, and the first experimental results.
Resumo:
Carbon and nitrogen stable isotope ratios were measured in 157 fish bone collagen samples from 15 different archaeological sites in Belgium which ranged in ages from the 3rd to the 18th c. AD. Due to diagenetic contamination of the burial environment, only 63 specimens produced results with suitable C:N ratios (2.9–3.6). The selected bones encompass a wide spectrum of freshwater, brackish, and marine taxa (N = 18), and this is reflected in the δ13C results (−28.2‰ to −12.9%). The freshwater fish have δ13C values that range from −28.2‰ to −20.2‰, while the marine fish cluster between −15.4‰ and −13.0‰. Eel, a catadromous species (mostly living in freshwater but migrating into the sea to spawn), plots between −24.1‰ and −17.7‰, and the anadromous fish (living in marine environments but migrating into freshwater to spawn) show a mix of freshwater and marine isotopic signatures. The δ15N results also have a large range (7.2‰ to 16.7‰) indicating that these fish were feeding at many different trophic levels in these diverse aquatic environments. The aim of this research is the isotopic characterization of archaeological fish species (ecology, trophic level, migration patterns) and to determine intra-species variation within and between fish populations differing in time and location. Due to the previous lack of archaeological fish isotope data from Northern Europe and Belgium in particular, these results serve as an important ecological backdrop for the future isotopic reconstruction of the diet of human populations dating from the historical period (1st and 2nd millennium AD), where there is zooarchaeological and historical evidence for an increased consumption of marine fish.
Resumo:
The study of stable isotopes surviving in human bone is fast becoming a standard response in the analysis of cemeteries. Reviewing the state of the art for Roman Britain, the author shows clear indications of a change in diet (for the better) following the Romanisation of Iron Age Britain—including more seafood, and more nutritional variety in the towns. While samples from the bones report an average of diet over the years leading up to an individual's death, carbon and nitrogen isotope signatures taken from the teeth may have a biographical element—capturing those childhood dinners. In this way migrants have been detected—as in the likely presence of Africans in Roman York. While not unexpected, these results show the increasing power of stable isotopes to comment on populations subject to demographic pressures of every kind.
Resumo:
Objective: Proper interactions between the intestinal mucosa, gut microbiota and nutrient flow are required to establish homoeostasis of the host. Since the proximal part of the small intestine is the first region where these interactions occur, and since most of the nutrient absorption occurs in the jejunum, it is important to understand the dynamics of metabolic responses of the mucosa in this intestinal region.Design: Germ-free mice aged 8-10 weeks were conventionalised with faecal microbiota, and responses of the jejunal mucosa to bacterial colonisation were followed over a 30-day time course. Combined transcriptome, histology, (1)H NMR metabonomics and microbiota phylogenetic profiling analyses were used.Results: The jejunal mucosa showed a two-phase response to the colonising microbiota. The acute-phase response, which had already started 1 day after conventionalisation, involved repression of the cell cycle and parts of the basal metabolism. The secondary-phase response, which was consolidated during conventionalisation (days 4-30), was characterised by a metabolic shift from an oxidative energy supply to anabolic metabolism, as inferred from the tissue transcriptome and metabonome changes. Detailed transcriptome analysis identified tissue transcriptional signatures for the dynamic control of the metabolic reorientation in the jejunum. The molecular components identified in the response signatures have known roles in human metabolic disorders, including insulin sensitivity and type 2 diabetes mellitus.Conclusion: This study elucidates the dynamic jejunal response to the microbiota and supports a prominent role for the jejunum in metabolic control, including glucose and energy homoeostasis. The molecular signatures of this process may help to find risk markers in the declining insulin sensitivity seen in human type 2 diabetes mellitus, for instance.
Resumo:
During propagation, Magnetic Clouds (MC) interact with their environment and, in particular, may reconnect with the solar wind around it, eroding away part of its initial magnetic flux. Here we quantitatively analyze such an interaction using combined, multipoint observations of the same MC flux rope by STEREO A, B, ACE, WIND and THEMIS on November 19–20, 2007. Observation of azimuthal magnetic flux imbalance inside a MC flux rope has been argued to stem from erosion due to magnetic reconnection at its front boundary. The present study adds to such analysis a large set of signatures expected from this erosion process. (1) Comparison of azimuthal flux imbalance for the same MC at widely separated points precludes the crossing of the MC leg as a source of bias in flux imbalance estimates. (2) The use of different methods, associated errors and parametric analyses show that only an unexpectedly large error in MC axis orientation could explain the azimuthal flux imbalance. (3) Reconnection signatures are observed at the MC front at all spacecraft, consistent with an ongoing erosion process. (4) Signatures in suprathermal electrons suggest that the trailing part of the MC has a different large-scale magnetic topology, as expected. The azimuthal magnetic flux erosion estimated at ACE and STEREO A corresponds respectively to 44% and 49% of the inferred initial azimuthal magnetic flux before MC erosion upon propagation. The corresponding average reconnection rate during transit is estimated to be in the range 0.12–0.22 mV/m, suggesting most of the erosion occurs in the inner parts of the heliosphere. Future studies ought to quantify the influence of such an erosion process on geo-effectiveness.
Resumo:
Objective To highlight the contribution of the gut microbiota to the modulation of host metabolism by dietary inulin-type fructans (ITF prebiotics) in obese women. Methods A double blind, placebo controlled, intervention study was performed with 30 obese women treated with ITF prebiotics (inulin/oligofructose 50/50 mix; n=15) or placebo (maltodextrin; n=15) for 3 months (16 g/day). Blood, faeces and urine sampling, oral glucose tolerance test, homeostasis model assessment and impedancemetry were performed before and after treatment. The gut microbial composition in faeces was analysed by phylogenetic microarray and qPCR analysis of 16S rDNA. Plasma and urine metabolic profiles were analysed by 1H-NMR spectroscopy. Results Treatment with ITF prebiotics, but not the placebo, led to an increase in Bifidobacterium and Faecalibacterium prausnitzii; both bacteria negatively correlated with serum lipopolysaccharide levels. ITF prebiotics also decreased Bacteroides intestinalis, Bacteroides vulgatus and Propionibacterium, an effect associated with a slight decrease in fat mass and with plasma lactate and phosphatidylcholine levels. No clear treatment clustering could be detected for gut microbial analysis or plasma and urine metabolomic profile analyses. However, ITF prebiotics led to subtle changes in the gut microbiota that may importantly impact on several key metabolites implicated in obesity and/or diabetes. Conclusions ITF prebiotics selectively changed the gut microbiota composition in obese women, leading to modest changes in host metabolism, as suggested by the correlation between some bacterial species and metabolic endotoxaemia or metabolomic signatures.
Resumo:
Droughts tend to evolve slowly and affect large areas simultaneously, which suggests that improved understanding of spatial coherence of drought would enable better mitigation of drought impacts through enhanced monitoring and forecasting strategies. This study employs an up-to-date dataset of over 500 river flow time series from 11 European countries, along with a gridded precipitation dataset, to examine the spatial coherence of drought in Europe using regional indicators of precipitation and streamflow deficit. The drought indicators were generated for 24 homogeneous regions and, for selected regions, historical drought characteristics were corroborated with previous work. The spatial coherence of drought characteristics was then examined at a European scale. Historical droughts generally have distinctive signatures in their spatio-temporal development, so there was limited scope for using the evolution of historical events to inform forecasting. Rather, relationships were explored in time series of drought indicators between regions. Correlations were generally low, but multivariate analyses revealed broad continental-scale patterns, which appear to be related to large-scale atmospheric circulation indices (in particular, the North Atlantic Oscillation and the East Atlantic West Russia pattern). A novel methodology for forecasting was developed (and demonstrated with reference to the United Kingdom), which predicts drought from drought i.e. uses spatial coherence of drought to facilitate early warning of drought in a target region, from drought which is developing elsewhere in Europe.Whilst the skill of the methodology is relatively modest at present, this approach presents a potential new avenue for forecasting, which offers significant advantages in that it allows prediction for all seasons, and also shows some potential for forecasting the termination of drought conditions.
Resumo:
The climate of the Earth, like planetary climates in general, is broadly controlled by solar irradiation, planetary albedo and emissivity as well as its rotation rate and distribution of land (with its orography) and oceans. However, the majority of climate fluctuations that affect mankind are internal modes of the general circulation of the atmosphere and the oceans. Some of these modes, such as El Nino-Southern Oscillation (ENSO), are quasi-regular and have some longer-term predictive skill; others like the Arctic and Antarctic Oscillation are chaotic and generally unpredictable beyond a few weeks. Studies using general circulation models indicate that internal processes dominate the regional climate and that some like ENSO events have even distinct global signatures. This is one of the reasons why it is so difficult to separate internal climate processes from external ones caused, for example, by changes in greenhouse gases and solar irradiation. However, the accumulation of the warmest seasons during the latest two decades is lending strong support to the forcing of the greenhouse gases. As models are getting more comprehensive, they show a gradually broader range of internal processes including those on longer time scales, challenging the interpretation of the causes of past and present climate events further.
Resumo:
Understanding the role of the diet in determining human health and disease is one major objective of modern nutrition. Mammalian biocomplexity necessitates the incorporation of systems biology technologies into contemporary nutritional research. Metabonomics is a powerful approach that simultaneously measures the low-molecular-weight compounds in a biological sample, enabling the metabolic status of a biological system to be characterized. Such biochemical profiles contain latent information relating to inherent parameters, such as the genotype, and environmental factors, including the diet and gut microbiota. Nutritional metabonomics, or nutrimetabonomics, is being increasingly applied to study molecular interactions between the diet and the global metabolic system. This review discusses three primary areas in which nutrimetabonomics has enjoyed successful application in nutritional research: the illumination of molecular relationships between nutrition and biochemical processes; elucidation of biomarker signatures of food components for use in dietary surveillance; and the study of complex trans-genomic interactions between the mammalian host and its resident gut microbiome. Finally, this review illustrates the potential for nutrimetabonomics in nutritional science as an indispensable tool to achieve personalized nutrition.
Resumo:
Possible changes in the frequency and intensity of windstorms under future climate conditions during the 21st century are investigated based on an ECHAM5 GCM multi-scenario ensemble. The intensity of a storm is quantified by the associated estimated loss derived with using an empirical model. The geographical focus is ‘Core Europe’, which comprises countries of Western Europe. Possible changes of losses are analysed by comparing ECHAM5 GCM data for recent (20C, 1960 to 2000) and future climate conditions (B1, A1B, A2; 2060 to 2100), each with 3 ensemble members. Changes are quantified using both rank statistics and return periods (RP) estimated by fitting an extreme value distribution using the peak over threshold method to potential storm losses. The estimated losses for ECHAM5 20C and reanalysis events show similar statistical features in terms of return periods. Under future climate conditions, all climate scenarios show an increase in both frequency and magnitude of potential losses caused by windstorms for Core Europe. Future losses that are double the highest ECHAM5 20C loss are identified for some countries. While positive changes of ranking are significant for many countries and multiple scenarios, significantly shorter RPs are mostly found under the A2 scenario for return levels correspondent to 20 yr losses or less. The emergence time of the statistically significant changes in loss varies from 2027 to 2100. These results imply an increased risk of occurrence of windstorm-associated losses, which can be largely attributed to changes in the meteorological severity of the events. Additionally, factors such as changes in the cyclone paths and in the location of the wind signatures relative to highly populated areas are also important to explain the changes in estimated losses.
Resumo:
We present a detailed case study of the characteristics of auroral forms that constitute the first ionospheric signatures of substorm expansion phase onset. Analysis of the optical frequency and along-arc (azimuthal) wave number spectra provides the strongest constraint to date on the potential mechanisms and instabilities in the near-Earth magnetosphere that accompany auroral onset and which precede poleward arc expansion and auroral breakup. We evaluate the frequency and growth rates of the auroral forms as a function of azimuthal wave number to determine whether these wave characteristics are consistent with current models of the substorm onset mechanism. We find that the frequency, spatial scales, and growth rates of the auroral forms are most consistent with the cross-field current instability or a ballooning instability, most likely triggered close to the inner edge of the ion plasma sheet. This result is supportive of a near-Earth plasma sheet initiation of the substorm expansion phase. We also present evidence that the frequency and phase characteristics of the auroral undulations may be generated via resonant processes operating along the geomagnetic field. Our observations provide the most powerful constraint to date on the ionospheric manifestation of the physical processes operating during the first few minutes around auroral substorm onset.
Resumo:
Despite the characterization of the auroral substorm more than 40 years ago, controversy still surrounds the processes triggering substorm onset initiation. That stretching of the Earth's magnetotail following the addition of new nightside magnetic flux from dayside reconnection powers the substorm is well understood; the trigger for explosive energy release at substorm expansion phase onset is not. Using ground-based data sets with unprecedented combined spatial and temporal coverage, we report the discovery of new localized and contemporaneous magnetic wave and small azimuthal scale auroral signature of substorm onset. These local auroral arc undulations and magnetic field signatures rapidly evolve on second time scales for several minutes in advance of the release of the auroral surge. We also present evidence from a conjugate geosynchronous satellite of the concurrent magnetic onset in space as the onset of magnetic pulsations in the ionosphere, to within technique error. Throughout this time period, the more poleward arcs that correspond to the auroral oval which maps to the central plasma sheet remain undisturbed. There is good evidence that flows from the midtail crossing the plasma sheet can generate north-south auroral structures, yet no such auroral forms are seen in this event. Our observations present a severe challenge to the standard hypothesis that magnetic reconnection in stretched magnetotail fields triggers onset, indicating substorm expansion phase initiation occurs on field lines that are close to the Earth, as bounded by observations at geosynchronous orbit and in the conjugate ionosphere.
Resumo:
An ongoing controversy in Amazonian palaeoecology is the manner in which Amazonian rainforest communities have responded to environmental change over the last glacial–interglacial cycle. Much of this controversy results from an inability to identify the floristic heterogeneity exhibited by rainforest communities within fossil pollen records. We apply multivariate (Principal Components Analysis) and classification (Unweighted Pair Group with Arithmetic Mean Agglomerative Classification) techniques to floral-biometric, modern pollen trap and lake sediment pollen data situated within different rainforest communities in the tropical lowlands of Amazonian Bolivia. Modern pollen rain analyses from artificial pollen traps show that evergreen terra firme (well-drained), evergreen terra firme liana, evergreen seasonally inundated, and evergreen riparian rainforests may be readily differentiated, floristically and palynologically. Analogue matching techniques, based on Euclidean distance measures, are employed to compare these pollen signatures with surface sediment pollen assemblages from five lakes: Laguna Bella Vista, Laguna Chaplin, and Laguna Huachi situated within the Madeira-Tapajós moist forest ecoregion, and Laguna Isirere and Laguna Loma Suarez, which are situated within forest patches in the Beni savanna ecoregion. The same numerical techniques are used to compare rainforest pollen trap signatures with the fossil pollen record of Laguna Chaplin.
Resumo:
This paper presents a critical history of the concept of ‘structured deposition’. It examines the long-term development of this idea in archaeology, from its origins in the early 1980s through to the present day, looking at how it has been moulded and transformed. On the basis of this historical account, a number of problems are identified with the way that ‘structured deposition’ has generally been conceptualized and applied. It is suggested that the range of deposits described under a single banner as being ‘structured’ is unhelpfully broad, and that archaeologists have been too willing to view material culture patterning as intentionally produced – the result of symbolic or ritual action. It is also argued that the material signatures of ‘everyday’ practice have been undertheorized and all too often ignored. Ultimately, it is suggested that if we are ever to understand fully the archaeological signatures of past practice, it is vital to consider the ‘everyday’ as well as the ‘ritual’ processes which lie behind the patterns we uncover in the ground.