100 resultados para BIFIDOBACTERIUM LACTIS
Resumo:
Recently, probiotic fermented milk products have raised interest regarding their potential anti-hypertensive activity mainly due to the production of angiotensin-I-converting enzyme (ACE) inhibitory peptides. Ionic calcium released upon milk acidification during fermentation is also known to exert hypotensive activity. Thus, the main aim of this study was to screen probiotic strains for their ability to induce ACE-inhibitory activity upon fermentation of milk. The relationship of ACE-inhibitory activity percentage (ACEi%) with cell growth, pH, degree of hydrolysis and the concentration of ionic calcium released during the fermentation was also investigated. Compared with other lactic acid bacteria, Lactobacillus casei YIT 9029 and Bifidobacterium bifidum MF 20/5 were able to induce strong ACE-inhibitory activity. Furthermore, it was found that the ionic calcium released during milk fermentation could contribute to the ACE-inhibitory activity. These findings will contribute to the development of new probiotic dairy products with anti-hypertensive activity.
Resumo:
Fermentation properties of oligosaccharides derived from lactulose (OsLu) and lactose (GOS) have been assessed in pH-controlled anaerobic batch cultures using lactulose and Vivinal-GOS as reference carbohydrates. Changes in gut bacterial populations and their metabolic activities were monitored over 24 h by fluorescent in situ hybridization (FISH) and by measurement of short-chain fatty acid (SCFA) production. Lactulose-derived oligosaccharides were selectively fermented by Bifidobacterium and lactic acid bacterial populations producing higher SCFA concentrations compared to GOS. The highest total SCFA production was from Vivinal-GOS > lactulose > OsLu > GOS. Longer incubation periods produced a selective fermentation of OsLu when they were used as a carbon source reaching the highest selective index scores. The new oligosaccharides may constitute a good alternative to lactulose, and they could belong to a new generation of prebiotics to be used as a functional ingredient for improving the composition of gut microflora.
Resumo:
Evidence from in vivo and in vitro studies suggests that the consumption of pro- and prebiotics may inhibit colon carcinogenesis; however, the mechanisms involved have, thus far, proved elusive. There are some indications from animal studies that the effects are being exerted during the promotion stage of carcinogenesis. One feature of the promotion stage of colorectal cancer is the disruption of tight junctions, leading to a loss of integrity across the intestinal barrier. We have used the Caco-2 human adenocarcinoma cell line as a model for the intestinal epithelia. Trans-epithelial electrical resistance measurements indicate Caco-2 monolayer integrity, and we recorded changes to this integrity following exposure to the fermentation products of selected probiotics and prebiotics, in the form of nondigestible oligosaccharides (NDOs). Our results indicate that NDOs themselves exert varying, but generally minor, effects upon the strength of the tight junctions, whereas the fermentation products of probiotics and NDOs tend to raise tight junction integrity above that of the controls. This effect was bacterial species and oligosaccharide specific. Bifidobacterium Bb 12 was particularly effective, as were the fermentation products of Raftiline and Raftilose. We further investigated the ability of Raftilose fermentations to protect against the negative effects of deoxycholic acid (DCA) upon tight junction integrity. We found protection to be species dependent and dependent upon the presence of the fermentation products in the media at the same time as or after exposure to the DCA. Results suggest that the Raftilose fermentation products may prevent disruption of the intestinal epithelial barrier function during damage by tumor promoters.
Resumo:
Six strains of lactic acid producing bacteria (LAB) were incubated (1 x 10(8)cfu/ml) with genotoxic faecal water from a human subject. HT29 human adenocarcinoma cells were then challenged with the resultant samples and DNA damage measured using the single cell gel electrophoresis (comet) assay. The LAB strains investigated were Bifidobacterium sp. 420, Bifidobacterium Bb12, Lactobacillus plantarum, Streptococcus thermophilus, Lactobacillus bulgaricus and Enterococcus faecium. DNA damage was significantly decreased by all bacteria used with the exception of Strep. thermophilus. Bif. Bb12 and Lact. plantarum showed the greatest protective effect against DNA damage. Incubation of faecal water with different concentrations of Bif. Bb12 and Lact. plantarum revealed that the decrease in genotoxicity was related to cell density. Non-viable (heat treated) probiotic cells had no effect on faecal water genotoxicity. In a second study, HT29 cells were cultured in the presence of supernatants of incubations of probiotics with various carbohydrates including known prebiotics; the HT29 cells were then exposed to faecal water. Overall, incubations involving Lact. plantarum with the fructooligosaccharide (FOS)-based prebiotics Inulin, Raftiline, Raftilose and Actilight were the most effective in increasing the cellular resistance to faecal water genotoxicity, whereas fermentations with Elixor (a galactooligosaccharide) and Fibersol (a maltodextrin) were less effective. Substantial reductions in faecal water-induced DNA damage were also seen with supernatants from incubation of prebiotics with Bif. Bb12. The supernatant of fermentations involving Ent. faecium and Bif. sp. 420 generally had less potent effects on genotoxicity although some reductions with Raftiline and Elixor fermentations were apparent.
Resumo:
The prebiotic effect of oligosaccharides recovered and purified from caprine whey, was evaluated by in vitro fermentation under anaerobic conditions using batch cultures at 37ºC with human faeces. Effects on key gut bacterial groups were monitored over 24h by fluorescence in situ hybridisation (FISH), which was used to determine a quantitative prebiotic index score. Production of short-chain fatty acids (SCFAs) as fermentation end products was analysed by high-performance liquid chromatography (HPLC). Growth of Bifidobacterium spp was significantly higher (p ≥ 0.05) with the purified oligosaccharides compared to the negative control. Lactic and propionic acids were the main SCFAs produced. Antimicrobial activity of the oligosaccharides was also tested, revealing no inhibition though a decrease in Staphylococcus aureus and Escherichia coli growth. These findings indicate that naturally extracted oligosaccharides from caprine whey could be used as new and valuable source of prebiotics.
Resumo:
The aim of this study was to investigate the antimicrobial properties of fifteen selected strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera against Gram-positive and Gram-negative pathogenic bacteria. In vitro antibacterial activity was initially investigated by an agar spot method. Results from the agar spot test showed that most of the selected strains were able to produce active compounds on solid media with antagonistic properties against Salmonella Typhimurium, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and Clostridium difficile. These results were also confirmed when cell-free culture supernatants (CFCS) from the putative probiotics were used in an agar well diffusion assay. Neutralization of the culture supernatants with alkali reduced the antagonistic effects. These experiments are able to confirm the capacity of potential probiotics to inhibit selected pathogens. One of the main inhibitory mechanisms may result from the production of organic acids from glucose fermentation and consequent lowering of culture pH. This observation was confirmed when the profile of organic acids was analysed demonstrating that lactic and acetic acid were the principal end products of probiotic metabolism. Furthermore, the assessment of the haemolytic activity and the susceptibility of the strains to the most commonly used antimicrobials, considered as basic safety aspects, were also studied. The observed antimicrobial activity was mainly genus-specific, additionally significant differences could be observed among species.
Resumo:
Objective To highlight the contribution of the gut microbiota to the modulation of host metabolism by dietary inulin-type fructans (ITF prebiotics) in obese women. Methods A double blind, placebo controlled, intervention study was performed with 30 obese women treated with ITF prebiotics (inulin/oligofructose 50/50 mix; n=15) or placebo (maltodextrin; n=15) for 3 months (16 g/day). Blood, faeces and urine sampling, oral glucose tolerance test, homeostasis model assessment and impedancemetry were performed before and after treatment. The gut microbial composition in faeces was analysed by phylogenetic microarray and qPCR analysis of 16S rDNA. Plasma and urine metabolic profiles were analysed by 1H-NMR spectroscopy. Results Treatment with ITF prebiotics, but not the placebo, led to an increase in Bifidobacterium and Faecalibacterium prausnitzii; both bacteria negatively correlated with serum lipopolysaccharide levels. ITF prebiotics also decreased Bacteroides intestinalis, Bacteroides vulgatus and Propionibacterium, an effect associated with a slight decrease in fat mass and with plasma lactate and phosphatidylcholine levels. No clear treatment clustering could be detected for gut microbial analysis or plasma and urine metabolomic profile analyses. However, ITF prebiotics led to subtle changes in the gut microbiota that may importantly impact on several key metabolites implicated in obesity and/or diabetes. Conclusions ITF prebiotics selectively changed the gut microbiota composition in obese women, leading to modest changes in host metabolism, as suggested by the correlation between some bacterial species and metabolic endotoxaemia or metabolomic signatures.
Resumo:
AIMS: The aim of this study was to evaluate the impact of the administration of microencapsulated Lactobacillus plantarum CRL 1815 with two combinations of microbially derived polysaccharides, xanthan : gellan gum (1%:0·75%) and jamilan : gellan gum (1%:1%), on the rat faecal microbiota. METHODS AND RESULTS: A 10-day feeding study was performed for each polymer combination in groups of 16 rats fed either with placebo capsules, free or encapsulated Lact. plantarum or water. The composition of the faecal microbiota was analysed by fluorescence in situ hybridization and temporal temperature gradient gel electrophoresis. Degradation of placebo capsules was detected, with increased levels of polysaccharide-degrading bacteria. Xanthan : gellan gum capsules were shown to reduce the Bifidobacterium population and increase the Clostridium histolyticum group levels, but not jamilan : gellan gum capsules. Only after administration of jamilan : gellan gum-probiotic capsules was detected a significant increase in Lactobacillus-Enterococcus group levels compared to controls (capsules and probiotic) as well as two bands were identified as Lact. plantarum in two profiles of ileum samples. CONCLUSIONS: Exopolysaccharides constitute an interesting approach for colon-targeted delivery of probiotics, where jamilan : gellan gum capsules present better biocompatibility and promising results as a probiotic carrier. SIGNIFICANCE AND IMPACT OF STUDY: This study introduces and highlights the importance of biological compatibility in the encapsulating material election, as they can modulate the gut microbiota by themselves, and the use of bacterial exopolysaccharides as a powerful source of new targeted-delivery coating material.
Resumo:
The oral administration of probiotic bacteria has shown potential in clinical trials for the alleviation of specific disorders of the gastrointestinal tract. However, cells must be alive in order to exert these benefits. The low pH of the stomach can greatly reduce the number of viable microorganisms that reach the intestine, thereby reducing the efficacy of the administration. Herein, a model probiotic, Bifidobacterium breve, has been encapsulated into an alginate matrix before coating in multilayers of alternating alginate and chitosan. The intention of this formulation was to improve the survival of B. breve during exposure to low pH and to target the delivery of the cells to the intestine. The material properties were first characterized before in vitro testing. Biacore™ experiments allowed for the polymer interactions to be confirmed; additionally, the stability of these multilayers to buffers simulating the pH of the gastrointestinal tract was demonstrated. Texture analysis was used to monitor changes in the gel strength during preparation, showing a weakening of the matrices during coating as a result of calcium ion sequestration. The build-up of multilayers was confirmed by confocal laser-scanning microscopy, which also showed the increase in the thickness of coat over time. During exposure to in vitro gastric conditions, an increase in viability from <3 log(CFU) per mL, seen in free cells, up to a maximum of 8.84 ± 0.17 log(CFU) per mL was noted in a 3-layer coated matrix. Multilayer-coated alginate matrices also showed a targeting of delivery to the intestine, with a gradual release of their loads over 240 min.
Resumo:
BACKGROUND: Obesity is rising at an alarming rate globally. Different fermentable carbohydrates have been shown to reduce obesity. The aim of the present study was to investigate if two different fermentable carbohydrates (inulin and b-glucan) exert similar effects on body composition and central appetite regulation in high fat fed mice. METHODOLOGY/PRINCIPAL FINDINGS: Thirty six C57BL/6 male mice were randomized and maintained for 8 weeks on a high fat diet containing 0% (w/w) fermentable carbohydrate, 10% (w/w) inulin or 10% (w/w) b-glucan individually. Fecal and cecal microbial changes were measured using fluorescent in situ hybridization, fecal metabolic profiling was obtained by proton nuclear magnetic resonance (1H NMR), colonic short chain fatty acids were measured by gas chromatography, body composition and hypothalamic neuronal activation were measured using magnetic resonance imaging (MRI) and manganese enhanced MRI (MEMRI), respectively, PYY (peptide YY) concentration was determined by radioimmunoassay, adipocyte cell size and number were also measured. Both inulin and b-glucan fed groups revealed significantly lower cumulative body weight gain compared with high fat controls. Energy intake was significantly lower in b-glucan than inulin fed mice, with the latter having the greatest effect on total adipose tissue content. Both groups also showed an increase in the numbers of Bifidobacterium and Lactobacillus-Enterococcus in cecal contents as well as feces. b- glucan appeared to have marked effects on suppressing MEMRI associated neuronal signals in the arcuate nucleus, ventromedial hypothalamus, paraventricular nucleus, periventricular nucleus and the nucleus of the tractus solitarius, suggesting a satiated state. CONCLUSIONS/SIGNIFICANCE: Although both fermentable carbohydrates are protective against increased body weight gain, the lower body fat content induced by inulin may be metabolically advantageous. b-glucan appears to suppress neuronal activity in the hypothalamic appetite centers. Differential effects of fermentable carbohydrates open new possibilities for nutritionally targeting appetite regulation and body composition.
Resumo:
The fermentation selectivity of a commercial source of α-gluco-oligosaccharides (BioEcolians; Solabia) was investigated in vitro. Fermentation by faecal bacteria from four lean and four obese healthy adults was determined in anaerobic, pH-controlled faecal batch cultures. Inulin was used as a positive prebiotic control. Samples were obtained at 0, 10, 24 and 36 h for bacterial enumeration by fluorescent in situ hybridisation and SCFA analyses. Gas production during fermentation was investigated in non-pH-controlled batch cultures. α-Gluco-oligosaccharides significantly increased the Bifidobacterium sp. population compared with the control. Other bacterial groups enumerated were unaffected with the exception of an increase in the Bacteroides–Prevotella group and a decrease in Faecalibacterium prausnitzii on both α-gluco-oligosaccharides and inulin compared with baseline. An increase in acetate and propionate was seen on both substrates. The fermentation of α-gluco-oligosaccharides produced less total gas at a more gradual rate of production than inulin. Generally, substrates fermented with the obese microbiota produced similar results to the lean fermentation regarding bacteriology and metabolic activity. No significant difference at baseline (0 h) was detected between the lean and obese individuals in any of the faecal bacterial groups studied.
Resumo:
With the exceptions of the bifidobacteria, propionibacteria and coriobacteria, the Actinobacteria associated with the human gastrointestinal tract have received little attention. This has been due to the seeming absence of these bacteria from most clone libraries. In addition, many of these bacteria have fastidious growth and atmospheric requirements. A recent cultivation-based study has shown that the Actinobacteria of the human gut may be more diverse than previously thought. The aim of this study was to develop a denaturing gradient gel electrophoresis (DGGE) approach for characterizing Actinobacteria present in faecal samples. Amount of DNA added to the Actinobacteria-specific PCR used to generate strong PCR products of equal intenstity from faecal samples of five infants, nine adults and eight elderly adults was anti-correlated with counts of bacteria obtained using fluorescence in situ hybridization probe HGC69A. A nested PCR using Actinobacteria-specific and universal PCR-DGGE primers was used to generate profiles for the Actinobacteria. Cloning of sequences from the DGGE bands confirmed the specificity of the Actinobacteria-specific primers. In addition to members of the genus Bifidobacterium, species belonging to the genera Propionibacterium, Microbacterium, Brevibacterium, Actinomyces and Corynebacterium were found to be part of the faecal microbiota of healthy humans.
Resumo:
It is common practice to freeze dry probiotic bacteria to improve their shelf life. However, the freeze drying process itself can be detrimental to their viability. The viability of probiotics could be maintained if they are administered within a microbially produced biodegradable polymer - poly-γ-glutamic acid (γ-PGA) - matrix. Although the antifreeze activity of γ-PGA is well known, it has not been used for maintaining the viability of probiotic bacteria during freeze drying. The aim of this study was to test the effect of γ-PGA (produced by B. subtilis natto ATCC 15245) on the viability of probiotic bacteria during freeze drying and to test the toxigenic potential of B. subtilis natto. 10% γ-PGA was found to protect Lactobacillus paracasei significantly better than 10% sucrose, whereas it showed comparable cryoprotectant activity to sucrose when it was used to protect Bifidobacterium breve and Bifidobacterium longum. Although γ-PGA is known to be non-toxic, it is crucial to ascertain the toxigenic potential of its source, B. subtilis natto. Presence of six genes that are known to encode for toxins were investigated: three component hemolysin (hbl D/A), three component non-haemolytic enterotoxin (nheB), B. cereus enterotoxin T (bceT), enterotoxin FM (entFM), sphingomyelinase (sph) and phosphatidylcholine-specific phospholipase (piplc). From our investigations, none of these six genes were present in B. subtilis natto. Moreover, haemolytic and lecithinase activities were found to be absent. Our work contributes a biodegradable polymer from a non-toxic source for the cryoprotection of probiotic bacteria, thus improving their survival during the manufacturing process.
Resumo:
Probiotics are currently being investigated for prevention of infections caused by enteric pathogens. The aim of this in vitro study was to evaluate the influence of three single probiotics: Lactobacillus casei NCIMB 30185 (PXN 37), Lactobacillus acidophilus NCIMB 30184 (PXN 35), Bifidobacterium breve NCIMB 30180 (PXN 25) and a probiotic mixture containing the above strains plus twelve other strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera on the survival of Salmonella Typhimurium and Clostridium difficile using pH-controlled anaerobic batch cultures containing mixed fecal bacteria. Changes in relevant bacterial groups and effects of probiotic addition on survival of the two pathogens were assessed over 24 h. Quantitative analysis of bacterial populations revealed that there was a significant increase in lactobacilli and/or bifidobacteria numbers, depending on probiotic addition, compared with the control (no added probiotic). There was also a significant reduction in S. Typhimurium and C. difficile numbers in the presence of certain probiotics compared with controls. Of the probiotic treatments, two single strains namely L. casei NCIMB 30185 (PXN 37), and B. breve NCIMB 30180 (PXN 25) were the most potent in reducing the numbers of S. Typhimurium and C. difficile. In addition, the supplementation with probiotics into the systems influenced some fermentations parameters. Acetate was found in the largest concentrations in all vessels and lactate and formate were generally detected in higher amounts in vessels with probiotic addition compared to controls.
Resumo:
The potential prebiotic effect of the fructo-trisaccharide, neokestose, on intestinal bacteria was investigated. Bifidobacterium sp. utilized neokestose to a greater extend and produced more biomass from neokestose than facultative anaerobes under anaerobic conditions in batch culture. Lactobacillus salivarius utilized glucose but negligible amounts of neokestose. L. salivarius and the facultative anaerobes produced significantly more biomass from glucose than from neokestose, whereas the biomass yields obtained with bifidobacteria on neokestose and glucose, respectively, were not significantly different. Static batch cultures inoculated with faeces supported the prebiotic effect of neokestose, which had been observed in the pure culture investigations. Bifidobacteria and lactobacilli were increased while potentially detrimental coliforms, clostridia and bacteroides, decreased after 24 h fermentation with neokestose. In addition, this effect was more pronounced with neokestose than with a commercial prebiotic fructo-oligosaccharide. It was concluded that neokestose has potential as a novel bifidogenic substance and that it might have advantages over the commercially available sources currently used.