83 resultados para Araras (SP)
Resumo:
An unknown Gram-positive, catalase-negative, ovoid-shaped bacterium isolated from the submandibular abscess of a rabbit was subjected to a polyphasic taxonomic analysis. Comparative 16S rRNA gene sequencing demonstrated the unknown coccus represents a new subline within the genus Gemella. The unknown isolate was readily distinguished from other recognized members of the genus Gemella, namely Gemella haemolysans, Gemella bergeri, Gemella morbillorum, Gemella palaticanis and Gemella sanguinis, by biochemical tests and electrophoretic analysis of whole-cell proteins. Based on both phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium is classified in the genus Gemella as Gemella cuniculi sp. nov. The type strain is CCUG 42726T.
Resumo:
Two strains of a previously undescribed Actinomyces-like bacterium were recovered in pure culture from infected root canals of teeth. Analysis by biochemical testing and polyacrylamide gel electrophoresis of whole-cell proteins indicated that the strains closely resembled each other phenotypically but were distinct from previously described Actinomyces and Arcanobacterium species. Comparative 16S rRNA gene-sequencing studies showed the bacterium to be a hitherto unknown subline within a group of Actinomyces species which includes Actinomyces bovis, the type species of the genus. Based on phylogenetic and phenotypic evidence, we propose that the unknown bacterium isolated from human clinical specimens be classified as Actinomyces radicidentis sp. nov. The type strain of Actinomyces radicidentis is CCUG 36733.
Resumo:
Three strains of a previously undescribed Actinomyces-like bacterium were isolated from human clinical sources (urine, urethra and vaginal secretion). Biochemical testing and PAGE analysis of whole-cell proteins indicated that the strains were phenotypically homogeneous and distinct from previously described Actinomyces and Arcanobacterium species. Comparative 16S rRNA gene sequencing studies showed the bacterium to be a hitherto unknown subline within a group of Actinomyces species which includes Actinomyces bovis, the type species of the genus. Based on phylogenetic and phenotypic evidence it is proposed that the unknown bacterium from humans be classified as Actinomyces urogenitalis sp. nov. The type strain of Actinomyces urogenitalis is CCUG 38702T (= CIP 106421T).
Resumo:
Three strains of a previously undescribed catalase-positive Actinomyces-like bacterium were isolated from dogs. Biochemical testing and PAGE analysis of whole-cell proteins indicated that the strains were phenotypically highly related to each other but different from previously described Actinomyces and Arcanobacterium species. Sequencing of 16S rRNA showed that the unknown bacterium represents a new subline within a cluster of species which includes Actinomyces hyovaginalis, Actinomyces georgiae, Actinomyces meyeri, Actinomyces odontolyticus, Actinomyces radingae and Actinomyces turicensis. On the basis of phenotypic evidence and 16S rRNA sequence divergence levels (greater than 5% with recognized Actinomyces species) it is proposed that the unknown strains from canine sources be classified as a new species with the name Actinomyces canis sp. nov. The type strain of Actinomyces canis is CCUG 41706T (= CIP 106351T).
Resumo:
A polyphasic taxonomic study was performed on two strains of an unknown Gram-positive, catalase-negative, coccus-shaped bacterium isolated from a dead seal and a harbour porpoise. Comparative 16S rRNA gene sequencing demonstrated that the unknown bacterium represents a new subline within the genus Vagococcus close to, but distinct from, Vagococcus fluvialis, Vagococcus lutrae and Vagococcus salmoninarum. The unknown bacterium was readily distinguished from the three currently recognized Vagococcus species by biochemical tests and electrophoretic analysis of whole-cell proteins. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium be classified as a new species, Vagococcus fessus. The type strain of Vagococcus fessus is CCUG 41755T.
Resumo:
Blumeria graminis is an economically important obligate plant-pathogenic fungus, whose entire genome was recently sequenced and manually annotated using ab initio in silico predictions [7]. Employing large scale proteogenomic analysis we are now able to verify independently the existence of proteins predicted by 24% of open reading frame models. We compared the haustoria and sporulating hyphae proteomes and identified 71 proteins exclusively in haustoria, the feeding and effector-delivery organs of the pathogen. These proteins are ‘significantly smaller than the rest of the protein pool and predicted to be secreted. Most do not share any similarities with Swiss–Prot or Trembl entries nor possess any identifiable Pfam domains. We used a novel automated prediction pipeline to model the 3D structures of the proteins, identify putative ligand binding sites and predict regions of intrinsic disorder. This revealed that the protein set found exclusively in haustoria is significantly less disordered than the rest of the identified Blumeria proteins or random (and representative) protein sets generated from the yeast proteome. For most of the haustorial proteins with unknown functions no good templates could be found, from which to generate high quality models. Thus, these unknown proteins present potentially new protein folds that can be specific to the interaction of the pathogen with its host.
Resumo:
Three strains of a Gram-positive, catalase-positive, fermentative, non-lipophilic, previously unknown bacterium were isolated from urogenital samples taken from mares in Scotland (M401624/00/1) and Sweden (VM 2074 and VM 2298T). All were deposited with the CCUG with tentative identifications as Corynebacterium spp. The strains were characterized using a polyphasic taxonomic approach. Biochemically, the strains were very similar to each other, but phylogenetically distinct from Corynebacterium species with validly published names (≤95% sequence similarity). rpoB gene sequence data confirmed the strains belonged to the same species (>99% sequence similarity) and were distinct from species with validly published names (>13% sequence divergence). On the basis of phenotypic and sequence data, the strains represent a novel species within the genus Corynebacterium, for which the name Corynebacterium uterequi is proposed. The type strain is VM 2298T (=CCUG 61235T = DSM 45634T), isolated from equine uterus.