100 resultados para Andrews, Trish
Resumo:
We utilize energy budget diagnostics from the Coupled Model Intercomparison Project phase 5 (CMIP5) to evaluate the models' climate forcing since preindustrial times employing an established regression technique. The climate forcing evaluated this way, termed the adjusted forcing (AF), includes a rapid adjustment term associated with cloud changes and other tropospheric and land-surface changes. We estimate a 2010 total anthropogenic and natural AF from CMIP5 models of 1.9 ± 0.9 W m−2 (5–95% range). The projected AF of the Representative Concentration Pathway simulations are lower than their expected radiative forcing (RF) in 2095 but agree well with efficacy weighted forcings from integrated assessment models. The smaller AF, compared to RF, is likely due to cloud adjustment. Multimodel time series of temperature change and AF from 1850 to 2100 have large intermodel spreads throughout the period. The intermodel spread of temperature change is principally driven by forcing differences in the present day and climate feedback differences in 2095, although forcing differences are still important for model spread at 2095. We find no significant relationship between the equilibrium climate sensitivity (ECS) of a model and its 2003 AF, in contrast to that found in older models where higher ECS models generally had less forcing. Given the large present-day model spread, there is no indication of any tendency by modelling groups to adjust their aerosol forcing in order to produce observed trends. Instead, some CMIP5 models have a relatively large positive forcing and overestimate the observed temperature change.
Resumo:
A fast simple climate modelling approach is developed for predicting and helping to understand general circulation model (GCM) simulations. We show that the simple model reproduces the GCM results accurately, for global mean surface air temperature change and global-mean heat uptake projections from 9 GCMs in the fifth coupled model inter-comparison project (CMIP5). This implies that understanding gained from idealised CO2 step experiments is applicable to policy-relevant scenario projections. Our approach is conceptually simple. It works by using the climate response to a CO2 step change taken directly from a GCM experiment. With radiative forcing from non-CO2 constituents obtained by adapting the Forster and Taylor method, we use our method to estimate results for CMIP5 representative concentration pathway (RCP) experiments for cases not run by the GCMs. We estimate differences between pairs of RCPs rather than RCP anomalies relative to the pre-industrial state. This gives better results because it makes greater use of available GCM projections. The GCMs exhibit differences in radiative forcing, which we incorporate in the simple model. We analyse the thus-completed ensemble of RCP projections. The ensemble mean changes between 1986–2005 and 2080–2099 for global temperature (heat uptake) are, for RCP8.5: 3.8 K (2.3 × 1024 J); for RCP6.0: 2.3 K (1.6 × 1024 J); for RCP4.5: 2.0 K (1.6 × 1024 J); for RCP2.6: 1.1 K (1.3 × 1024 J). The relative spread (standard deviation/ensemble mean) for these scenarios is around 0.2 and 0.15 for temperature and heat uptake respectively. We quantify the relative effect of mitigation action, through reduced emissions, via the time-dependent ratios (change in RCPx)/(change in RCP8.5), using changes with respect to pre-industrial conditions. We find that the effects of mitigation on global-mean temperature change and heat uptake are very similar across these different GCMs.
Resumo:
Using five climate model simulations of the response to an abrupt quadrupling of CO2, the authors perform the first simultaneous model intercomparison of cloud feedbacks and rapid radiative adjustments with cloud masking effects removed, partitioned among changes in cloud types and gross cloud properties. Upon CO2 quadrupling, clouds exhibit a rapid reduction in fractional coverage, cloud-top pressure, and optical depth, with each contributing equally to a 1.1 W m−2 net cloud radiative adjustment, primarily from shortwave radiation. Rapid reductions in midlevel clouds and optically thick clouds are important in reducing planetary albedo in every model. As the planet warms, clouds become fewer, higher, and thicker, and global mean net cloud feedback is positive in all but one model and results primarily from increased trapping of longwave radiation. As was true for earlier models, high cloud changes are the largest contributor to intermodel spread in longwave and shortwave cloud feedbacks, but low cloud changes are the largest contributor to the mean and spread in net cloud feedback. The importance of the negative optical depth feedback relative to the amount feedback at high latitudes is even more marked than in earlier models. The authors show that the negative longwave cloud adjustment inferred in previous studies is primarily caused by a 1.3 W m−2 cloud masking of CO2 forcing. Properly accounting for cloud masking increases net cloud feedback by 0.3 W m−2 K−1, whereas accounting for rapid adjustments reduces by 0.14 W m−2 K−1 the ensemble mean net cloud feedback through a combination of smaller positive cloud amount and altitude feedbacks and larger negative optical depth feedbacks.
Resumo:
When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. 1). There is a need to narrow uncertainty2 in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow—especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.
Resumo:
At least three ferritins are found in the bacterium Escherichia coli, the heme-containing bacterioferritin (EcBFR) and two non-heme bacterial ferritins (EcFtnA and EcFtnB). In addition to the conserved A- and B-sites of the diiron ferroxidase center, EcFtnA has a third iron-binding site (the C-site) of unknown function that is nearby the diiron site. In the present work, the complex chemistry of iron oxidation and deposition in EcFtnA has been further defined through a combination of oximetry, pH stat, stopped-flow and conventional kinetics, UV-visible, fluorescence and EPR spectroscopic measurements on the wildtype protein and site-directed variants of the A-, B- and C-sites. The data reveal that, while H2O2 is a product of dioxygen reduction in EcFtnA and oxidation occurs with a stoichiometry of Fe(II)/O2 ~ 3:1, most of the H2O2 produced is consumed in subsequent reactions with a 2:1 Fe(II)/H2O2 stoichiometry, thus suppressing hydroxyl radical formation. While the A- and B-sites are essential for rapid iron oxidation, the C-site slows oxidation and suppresses iron turnover at the ferroxidase center. A tyrosyl radical, assigned to Tyr24 near the ferroxidase center, is formed during iron oxidation and its possible significance to the function of the protein is discussed. Taken as a whole, the data indicate that there are multiple iron-oxidation pathways in EcFtnA with O2 and H2O2 as oxidants. Furthermore, the data are inconsistent with the C-site being a transit site, providing iron to the A- and B-sites, and does not support a universal mechanism for iron oxidation in all ferritins as recently proposed.
Resumo:
The health benefits of garlic have been proven by epidemiological and experimental studies. Diallyl disulphide (DADS), the major organosulfur compound found in garlic oil, is known to lower the incidence of breast cancer both in vitro and in vivo. The studies reported here demonstrate that DADS induces apoptosis in the MCF-7 breast-cancer cell line through interfering with cell-cycle growth phases in a way that increases the sub-G0 population and substantially halts DNA synthesis. DADS also induces phosphatidylserine (PS) translocation from the inner to the outer leaflet of the plasma membrane and activates caspase-3. Further studies revealed that DADS modulates the cellular levels of Bax, Bcl-2, Bcl-xL and Bcl-w in a dose-dependent manner, suggesting the involvement of Bcl-2 family proteins in DADS induced apoptosis. Histone deacetylation inhibitors (HDACi) are known to suppress cancer growth and induce apoptosis in cancer cells. Here it is shown that DADS has HDACi properties in MCF-7 cells as it lowers the removal of an acetyl group from an acetylated substrate and induces histone-4 (H4) hyper-acetylation. The data thus indicate that the HDACi properties of DADS may be responsible for the induction of apoptosis in breast cancer cells.
Resumo:
Iron is an essential cofactor for both mycobacterial growth during infection and for a successful protective immune response by the host. The immune response partly depends on the regulation of iron by the host, including the tight control of expression of the iron-storage protein, ferritin. BCG vaccination can protect against disease following Mycobacterium tuberculosis infection, but the mechanisms of protection remain unclear. To further explore these mechanisms, splenocytes from BCG-vaccinated guinea pigs were stimulated ex vivo with purified protein derivative from M. tuberculosis and a significant down-regulation of ferritin light- and heavy-chain was measured by reverse-transcription quantitative-PCR (P ≤0.05 and ≤0.01, respectively). The mechanisms of this down-regulation were shown to involve TNFα and nitric oxide. A more in depth analysis of the mRNA expression profiles, including genes involved in iron metabolism, was performed using a guinea pig specific immunological microarray following ex vivo infection with M. tuberculosis of splenocytes from BCG-vaccinated and naïve guinea pigs. M. tuberculosis infection induced a pro-inflammatory response in splenocytes from both groups, resulting in down-regulation of ferritin (P ≤0.05). In addition, lactoferrin (P ≤0.002), transferrin receptor (P ≤0.05) and solute carrier family 11A1 (P ≤0.05), were only significantly down-regulated after infection of the splenocytes from BCG-vaccinated animals. The results show that expression of iron-metabolism genes is tightly regulated as part of the host response to M. tuberculosis infection and that BCG-vaccination enhances the ability of the host to mount an iron-restriction response which may in turn help to combat invasion by mycobacteria.
Resumo:
In the Coupled Model Intercomparison Project Phase 5 (CMIP5), the model-mean increase in global mean surface air temperature T under the 1pctCO2 scenario (atmospheric CO2 increasing at 1% yr−1) during the second doubling of CO2 is 40% larger than the transient climate response (TCR), i.e. the increase in T during the first doubling. We identify four possible contributory effects. First, the surface climate system loses heat less readily into the ocean beneath as the latter warms. The model spread in the thermal coupling between the upper and deep ocean largely explains the model spread in ocean heat uptake efficiency. Second, CO2 radiative forcing may rise more rapidly than logarithmically with CO2 concentration. Third, the climate feedback parameter may decline as the CO2 concentration rises. With CMIP5 data, we cannot distinguish the second and third possibilities. Fourth, the climate feedback parameter declines as time passes or T rises; in 1pctCO2, this effect is less important than the others. We find that T projected for the end of the twenty-first century correlates more highly with T at the time of quadrupled CO2 in 1pctCO2 than with the TCR, and we suggest that the TCR may be underestimated from observed climate change.
Resumo:
Accounting for biodiversity has received increasing attention from the academic accounting community in recent years. Despite a stream of research investigating the quality and quantity of biodiversity reporting in general, no academic research has focused on reporting related to one specific species. This paper explores the quality and quantity of corporate disclosures relating to bees. Society is becoming increasingly concerned about the accelerating fall in bee populations around the world. Colony Collapse Disorder has been spreading through global bee populations since 2006, decimating commercial hives. Concerns are fuelled by fears that pollinators may become extinct which would have dire consequences for the majority of world food production, leaving human pollination, at immense cost, the only alternative. On the basis of these fears, companies as well as other organisations, have started to establish programmes aimed at rejuvenating global bee populations. In this paper we explore the bee-related disclosures provided by a large selection of UK listed companies. We assess the extent to which companies believe they have a role to play in enhancing and protecting bee populations. Further we consider whether corporate accountability in this area derives solely from a business case or whether there is a deeper societal connection with bees as a species which is encouraging companies to protect their survival. The paper investigates the historical and philosophical connection between bees and human beings, for example the ways industrial production has been likened to honey production. We draw parallels between bees and human industrial organisation as well as between the role and responsibilities of the bookkeeper and the beekeeper.