117 resultados para Alternating Sequential Filters.
Resumo:
Transport and deposition of charged inhaled aerosols in double planar bifurcation representing generation three to five of human respiratory system has been studied under a light activity breathing condition. Both steady and oscillatory laminar inhalation airflow is considered. Particle trajectories are calculated using a Lagrangian reference frame, which is dominated by the fluid force driven by airflow, gravity force and electrostatic forces (both of space and image charge forces). The particle-mesh method is selected to calculate the space charge force. This numerical study investigates the deposition efficiency in the three-dimensional model under various particle sizes, charge values, and inlet particle distribution. Numerical results indicate that particles carrying an adequate level of charge can improve deposition efficiency in the airway model.
Resumo:
The tap-length, or the number of the taps, is an important structural parameter of the linear MMSE adaptive filter. Although the optimum tap-length that balances performance and complexity varies with scenarios, most current adaptive filters fix the tap-length at some compromise value, making them inefficient to implement especially in time-varying scenarios. A novel gradient search based variable tap-length algorithm is proposed, using the concept of the pseudo-fractional tap-length, and it is shown that the new algorithm can converge to the optimum tap-length in the mean. Results of computer simulations are also provided to verify the analysis.
Resumo:
This paper describes a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation models using the extended Kalman filter. The method involves the use of a time-varying linearisation of a semi-explicit index one differential-algebraic equation. The estimation technique consists of a simplified extended Kalman filter that is integrated with the differential-algebraic equation model. The paper describes a simulation study using a model of a batch chemical reactor. It also reports a study based on experimental data obtained from a mixing process, where the model of the system is solved using the sequential modular method and the estimation involves a bank of extended Kalman filters.
Resumo:
In this paper the implementation of dynamic data reconciliation techniques for sequential modular models is described. The paper is organised as follows. First, an introduction to dynamic data reconciliation is given. Then, the online use of rigorous process models is introduced. The sequential modular approach to dynamic simulation is briefly discussed followed by a short review of the extended Kalman filter. The second section describes how the modules are implemented. A simulation case study and its results are also presented.
Resumo:
A study or experiment can be described as sequential if its design includes one or more interim analyses at which it is possible to stop the study, having reached a definitive conclusion concerning the primary question of interest. The potential of the sequential study to terminate earlier than the equivalent fixed sample size study means that, typically, there are ethical and economic advantages to be gained from using a sequential design. These advantages have secured a place for the methodology in the conduct of many clinical trials of novel therapies. Recently, there has been increasing interest in pharmacogenetics: the study of how DNA variation in the human genome affects the safety and efficacy of drugs. The potential for using sequential methodology in pharmacogenetic studies is considered and the conduct of candidate gene association studies, family-based designs and genome-wide association studies within the sequential setting is explored. The objective is to provide a unified framework for the conduct of these types of studies as sequential designs and hence allow experimenters to consider using sequential methodology in their future pharmacogenetic studies.
Resumo:
Objective To examine the impact of increasing numbers of metabolic syndrome (MetS) components on postprandial lipaemia. Methods Healthy men (n = 112) underwent a sequential meal postprandial investigation, in which blood samples were taken at regular intervals after a test breakfast (0 min) and lunch (330 min). Lipids and glucose were measured in the fasting sample, with triacylglycerol (TAG), non-esterified fatty acids and glucose analysed in the postprandial samples. Results Subjects were grouped according to the number of MetS components regardless of the combinations of components (0/1, 2, 3 and 4/5). As expected, there was a trend for an increase in body mass index, blood pressure, fasting TAG, glucose and insulin, and a decrease in fasting high-density lipoprotein cholesterol with increasing numbers of MetS components (P≤0.0004). A similar trend was observed for the summary measures of the postprandial TAG and glucose responses. For TAG, the area under the curve (AUC) and maximum concentration (maxC) were significantly greater in men with ≥ 3 than < 3 components (P < 0.001), whereas incremental AUC was greater in those with 3 than 0/1 and 2, and 4/5 compared with 2 components (P < 0.04). For glucose, maxC after the test breakfast (0-330 min) and total AUC (0-480 min) were higher in men with ≥ 3 than < 3 components (P≤0.001). Conclusions Our data analysis has revealed a linear trend between increasing numbers of MetS components and magnitude (AUC) of the postprandial TAG and glucose responses. Furthermore, the two meal challenge discriminated a worsening of postprandial lipaemic control in subjects with ≥ 3 MetS components.
Resumo:
This study investigates the production and on-line processing of English tense morphemes by sequential bilingual (L2) Turkish-speaking children with more than three years of exposure to English. Thirty nine 6-9-year-old L2 children and 28 typically developing age-matched monolingual (L1) children were administered the production component for third person –s and past tense of the Test for Early Grammatical Impairment (Rice & Wexler, 1996) and participated in an on-line word-monitoring task involving grammatical and ungrammatical sentences with presence/omission of tense (third person –s, past tense -ed) and non-tense (progressive –ing, possessive ‘s) morphemes. The L2 children’s performance on the on-line task was compared to that of children with Specific Language Impairment (SLI) in Montgomery & Leonard (1998, 2006) to ascertain similarities and differences between the two populations. Results showed that the L2 children were sensitive to the ungrammaticality induced by the omission of tense morphemes, despite variable production. This reinforces the claim about intact underlying syntactic representations in child L2 acquisition despite non target-like production (Haznedar & Schwartz, 1997).
Resumo:
Ensemble clustering (EC) can arise in data assimilation with ensemble square root filters (EnSRFs) using non-linear models: an M-member ensemble splits into a single outlier and a cluster of M−1 members. The stochastic Ensemble Kalman Filter does not present this problem. Modifications to the EnSRFs by a periodic resampling of the ensemble through random rotations have been proposed to address it. We introduce a metric to quantify the presence of EC and present evidence to dispel the notion that EC leads to filter failure. Starting from a univariate model, we show that EC is not a permanent but transient phenomenon; it occurs intermittently in non-linear models. We perform a series of data assimilation experiments using a standard EnSRF and a modified EnSRF by a resampling though random rotations. The modified EnSRF thus alleviates issues associated with EC at the cost of traceability of individual ensemble trajectories and cannot use some of algorithms that enhance performance of standard EnSRF. In the non-linear regimes of low-dimensional models, the analysis root mean square error of the standard EnSRF slowly grows with ensemble size if the size is larger than the dimension of the model state. However, we do not observe this problem in a more complex model that uses an ensemble size much smaller than the dimension of the model state, along with inflation and localisation. Overall, we find that transient EC does not handicap the performance of the standard EnSRF.
Resumo:
Background and Aims Forest trees directly contribute to carbon cycling in forest soils through the turnover of their fine roots. In this study we aimed to calculate root turnover rates of common European forest tree species and to compare them with most frequently published values. Methods We compiled available European data and applied various turnover rate calculation methods to the resulting database. We used Decision Matrix and Maximum-Minimum formula as suggested in the literature. Results Mean turnover rates obtained by the combination of sequential coring and Decision Matrix were 0.86 yr−1 for Fagus sylvatica and 0.88 yr−1 for Picea abies when maximum biomass data were used for the calculation, and 1.11 yr−1 for both species when mean biomass data were used. Using mean biomass rather than maximum resulted in about 30 % higher values of root turnover. Using the Decision Matrix to calculate turnover rate doubled the rates when compared to the Maximum-Minimum formula. The Decision Matrix, however, makes use of more input information than the Maximum-Minimum formula. Conclusions We propose that calculations using the Decision Matrix with mean biomass give the most reliable estimates of root turnover rates in European forests and should preferentially be used in models and C reporting.
Resumo:
An alternating hexameric water (H2O)(6) cluster and a chlorine-water cluster [Cl-2(H2O)(4)](2-) in the chair forms combine axially to each other to form a 1D chain [{Cl-2(H2O)(6)}(2-)](n) in complex [FeL2]Cl center dot(H2O)(3) (L=2-[(2-methylaminoethylimino)-methyl]-phenol)]. The water molecules display extensive H-bonding interactions with monomeric iron-organic units to form a hydrogen-bonded 2D supramolecular assembly.