85 resultados para Aircraft exhaust emissions.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Out-wintering pads offer a reduced cost system for wintering cattle, minimising damage to pasture, providing animal welfare and production benefits, and generate, potentially, a more manageable effluent and lower ammonia emissions. The objectives of the present study were (i) to contribute to improved understanding of the factors impacting on effluent quality, ammonia emissions and animal welfare via observations on four farm-based out-wintering pads (ComOWPs) in England, Wales and Ireland and more detailed studies undertaken on four experimental OWPs (ExpOWPs) constructed at Rothamsted Research North Wyke, Devon, England and (ii) to corroborate the effluent quality data from both the ComOWPs and the ExpOWPs, with findings in the literature. Woodchip size, feeding management and area allowance were the treatment factors applied on the ExpOWPs. These three factors were randomised across the four ExpOWPs, over four 6–7 week periods. Effluent quality from the ExpOWPs was sampled frequently in a flow proportional way and analysed for total N (TN); total P (TP); total solids (TS); ammonium-N (NH4+-N); nitrate-N (NO3−-N). Beef cattle were periodically weighed for determination of live weight gain (LWG). An approximate nitrogen balance was calculated as a means of understanding its partitioning and fate during and after the ExpOWPs use. Effluent quality from the ComOWPs was sampled frequently, also in a flow-proportional way, and analysed for TN, TP, TS, NH4+-N, NO3−-N, total K and COD. Effluent quality data from the ExpOWPs showed no significant differences (P > 0.05) between treatments, with average concentrations of 1095 mg l−1, and 806 mg l−1, for TN and NH4+-N, respectively. Average effluent concentrations from the ComOWPs were 356 mg l−1 TN and 124 mg l−1 NH4+-N. Ammonia emissions from the ExpOWPs showed no significant differences (P > 0.05) between the treatments, with average mean emission rates of 2.5 g m−2 d−1 NH3-N, respectively. A positive correlation was established between NH3-N emission rate and wind speed. Emission rates from the ComOWPs ranged from 0.7 to 1.6 g m−2 d−1 NH3-N. Average daily LWG on the ExpOWPs was 1.33 kg steer−1 d−1. The effluent from both the ComOWPs and ExpOWPs were more similar with dirty water and of consistently lower strength than beef cattle slurry, as supported by findings in the literature, and therefore, it is suggested to be subject to the regulatory requirements of dirty water rather than slurry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of halving greenhousegasemissions from hotels by 2030 has been studied as part of the Carbon Vision Buildings Programme. The aim of that programme was to study ways of reducing emissions from the existing stock because it will be responsible for the majority of building emissions over the next few decades. The work was carried out using detailed computer simulation using the ESP-r tool. Two hotels were studied, one older and converted and the other newer and purpose-built, with the aim of representing the most common UKhotel types. The effects were studied of interventions expected to be available in 2030 including fabric improvements, HVAC changes, lighting and appliance improvements and renewable energy generation. The main finding was that it is technically feasible to reduce emissions by 50% without compromising guest comfort. Ranking of the interventions was problematical for several reasons including interdependence and the impacts on boiler sizing of large reductions in the heating load

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global temperature response to increasing atmospheric CO2 is often quantified by metrics such as equilibrium climate sensitivity and transient climate response1. These approaches, however, do not account for carbon cycle feedbacks and therefore do not fully represent the net response of the Earth system to anthropogenic CO2 emissions. Climate–carbon modelling experiments have shown that: (1) the warming per unit CO2 emitted does not depend on the background CO2 concentration2; (2) the total allowable emissions for climate stabilization do not depend on the timing of those emissions3, 4, 5; and (3) the temperature response to a pulse of CO2 is approximately constant on timescales of decades to centuries3, 6, 7, 8. Here we generalize these results and show that the carbon–climate response (CCR), defined as the ratio of temperature change to cumulative carbon emissions, is approximately independent of both the atmospheric CO2 concentration and its rate of change on these timescales. From observational constraints, we estimate CCR to be in the range 1.0–2.1 °C per trillion tonnes of carbon (Tt C) emitted (5th to 95th percentiles), consistent with twenty-first-century CCR values simulated by climate–carbon models. Uncertainty in land-use CO2 emissions and aerosol forcing, however, means that higher observationally constrained values cannot be excluded. The CCR, when evaluated from climate–carbon models under idealized conditions, represents a simple yet robust metric for comparing models, which aggregates both climate feedbacks and carbon cycle feedbacks. CCR is also likely to be a useful concept for climate change mitigation and policy; by combining the uncertainties associated with climate sensitivity, carbon sinks and climate–carbon feedbacks into a single quantity, the CCR allows CO2-induced global mean temperature change to be inferred directly from cumulative carbon emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global efforts to mitigate climate change are guided by projections of future temperatures1. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain1, 2, 3, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming4, 5, 6, 7, 8. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions9, 10, 11. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO2), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 °C above pre-industrial temperatures, with a 5–95% confidence interval of 1.3–3.9 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-gas approaches to climate change policies require a metric establishing ‘equivalences’ among emissions of various species. Climate scientists and economists have proposed four kinds of such metrics and debated their relative merits. We present a unifying framework that clarifies the relationships among them. We show, as have previous authors, that the global warming potential (GWP), used in international law to compare emissions of greenhouse gases, is a special case of the global damage potential (GDP), assuming (1) a finite time horizon, (2) a zero discount rate, (3) constant atmospheric concentrations, and (4) impacts that are proportional to radiative forcing. Both the GWP and GDP follow naturally from a cost–benefit framing of the climate change issue. We show that the global temperature change potential (GTP) is a special case of the global cost potential (GCP), assuming a (slight) fall in the global temperature after the target is reached. We show how the four metrics should be generalized if there are intertemporal spillovers in abatement costs, distinguishing between private (e.g., capital stock turnover) and public (e.g., induced technological change) spillovers. Both the GTP and GCP follow naturally from a cost-effectiveness framing of the climate change issue. We also argue that if (1) damages are zero below a threshold and (2) infinitely large above a threshold, then cost-effectiveness analysis and cost–benefit analysis lead to identical results. Therefore, the GCP is a special case of the GDP. The UN Framework Convention on Climate Change uses the GWP, a simplified cost–benefit concept. The UNFCCC is framed around the ultimate goal of stabilizing greenhouse gas concentrations. Once a stabilization target has been agreed under the convention, implementation is clearly a cost-effectiveness problem. It would therefore be more consistent to use the GCP or its simplification, the GTP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ozone (O3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42−). We examine changes in the tropospheric composition of O3, CH4, SO42− and global net radiative forcing (RF) for 20% reductions in global CH4 burden and in anthropogenic O3 precursor emissions (NOx, NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean ± 1 standard deviation) across multiple CTMs. We evaluate steady state O3 responses, including long-term feedbacks via CH4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NOx reductions produce global, annually averaged positive net RFs (0.2 ± 0.6 to 1.7 ± 2 mWm−2/Tg N yr−1), with some variation among models. Negative net RFs result from reductions in global CH4 (−162.6 ± 2 mWm−2 for a change from 1760 to 1408 ppbv CH4) and regional NMVOC (−0.4 ± 0.2 to −0.7 ± 0.2 mWm−2/Tg C yr−1) and CO emissions (−0.13 ± 0.02 to −0.15 ± 0.02 mWm−2/Tg CO yr−1). Including the effect of O3 on CO2 uptake by vegetation likely makes these net RFs more negative by −1.9 to −5.2 mWm−2/Tg N yr−1, −0.2 to −0.7 mWm−2/Tg C yr−1, and −0.02 to −0.05 mWm−2/Tg CO yr−1. Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO42−, regionally to hemispherically by O3, and globally by CH4. Global annual average SO42− responses to oxidant changes range from 0.4 ± 2.6 to −1.9 ± 1.3 Gg for NOx reductions, 0.1 ± 1.2 to −0.9 ± 0.8 Gg for NMVOC reductions, and −0.09 ± 0.5 to −0.9 ± 0.8 Gg for CO reductions, suggesting additional research is needed. The 100-year global warming potentials (GWP100) are calculated for the global CH4 reduction (20.9 ± 3.7 without stratospheric O3 or water vapor, 24.2 ± 4.2 including those components), and for the regional NOx, NMVOC, and CO reductions (−18.7 ± 25.9 to −1.9 ± 8.7 for NOx, 4.8 ± 1.7 to 8.3 ± 1.9 for NMVOC, and 1.5 ± 0.4 to 1.7 ± 0.5 for CO). Variation in GWP100 for NOx, NMVOC, and CO suggests that regionally specific GWPs may be necessary and could support the inclusion of O3 precursors in future policies that address air quality and climate change simultaneously. Both global net RF and GWP100 are more sensitive to NOx and NMVOC reductions from South Asia than the other three regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO2, the climate response from sulphate is of the order decades while that of CO2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO2 and cooling by sulphate and nitrogen oxides.