139 resultados para Aggregate uncertainty
Resumo:
The firm's response to revenue-neutral taxation is investigated under price uncertainty. Revenue-neutral policies adjust simultaneously the marginal tax rate and the level of exemptions while keeping expected tax receipts constant. Nonincreasing absolute risk aversion is sufficient to sign the firm's response: a reduction in the marginal rate causes the firm to contract output. Implications are established for the equilibrium level of treasury receipts.
Resumo:
A discrete element model is used to study shear rupture of sea ice under convergent wind stresses. The model includes compressive, tensile, and shear rupture of viscous elastic joints connecting floes that move under the action of the wind stresses. The adopted shear rupture is governed by Coulomb’s criterion. The ice pack is a 400 km long square domain consisting of 4 km size floes. In the standard case with tensile strength 10 times smaller than the compressive strength, under uniaxial compression the failure regime is mainly shear rupture with the most probable scenario corresponding to that with the minimum failure work. The orientation of cracks delineating formed aggregates is bimodal with the peaks around the angles given by the wing crack theory determining diamond-shaped blocks. The ice block (floe aggregate) size decreases as the wind stress gradient increases since the elastic strain energy grows faster leading to a higher speed of crack propagation. As the tensile strength grows, shear rupture becomes harder to attain and compressive failure becomes equally important leading to elongation of blocks perpendicular to the compression direction and the blocks grow larger. In the standard case, as the wind stress confinement ratio increases the failure mode changes at a confinement ratio within 0.2–0.4, which corresponds to the analytical critical confinement ratio of 0.32. Below this value, the cracks are bimodal delineating diamond shape aggregates, while above this value failure becomes isotropic and is determined by small-scale stress anomalies due to irregularities in floe shape.
Resumo:
Tax policies that constrain net transfers between the farm sector and the fisc are modeled under price uncertainty. Increasing the level of tax on profits causes the firm to expand output. Implications are derived for supply control and the distributions of profits and net receipts at the fisc.
Resumo:
If Britain wants to stem the tide of nuclear proliferation, it must continue to assume "the nuclear man's burden" and guarantee the security of non-nuclear allies, as it did in the Cold War.
Resumo:
The evaluation of the quality and usefulness of climate modeling systems is dependent upon an assessment of both the limited predictability of the climate system and the uncertainties stemming from model formulation. In this study a methodology is presented that is suited to assess the performance of a regional climate model (RCM), based on its ability to represent the natural interannual variability on monthly and seasonal timescales. The methodology involves carrying out multiyear ensemble simulations (to assess the predictability bounds within which the model can be evaluated against observations) and multiyear sensitivity experiments using different model formulations (to assess the model uncertainty). As an example application, experiments driven by assimilated lateral boundary conditions and sea surface temperatures from the ECMWF Reanalysis Project (ERA-15, 1979–1993) were conducted. While the ensemble experiment demonstrates that the predictability of the regional climate varies strongly between different seasons and regions, being weakest during the summer and over continental regions, important sensitivities of the modeling system to parameterization choices are uncovered. In particular, compensating mechanisms related to the long-term representation of the water cycle are revealed, in which summer dry and hot conditions at the surface, resulting from insufficient evaporation, can persist despite insufficient net solar radiation (a result of unrealistic cloud-radiative feedbacks).
Resumo:
A diverse body of empirical literature recognizes that investment can influence tenure security, yet this phenomenon has rarely been examined analytically. This paper develops a theoretical model that demonstrates explicitly conditions under which the probability of eviction is endogenous to investment undertaken on illegally encroached land. By accommodating explicitly the government's objective function and its ability to commit credibly to an eviction policy, the model reveals why both those farmers who under-invest, and those who raise their investment levels to improve tenure security, may be behaving rationally. Indeed, both types of behaviour are accommodated within a single model.
Resumo:
We examine to what degree we can expect to obtain accurate temperature trends for the last two decades near the surface and in the lower troposphere. We compare temperatures obtained from surface observations and radiosondes as well as satellite-based measurements from the Microwave Soundings Units (MSU), which have been adjusted for orbital decay and non-linear instrument-body effects, and reanalyses from the European Centre for Medium-Range Weather Forecasts (ERA) and the National Centre for Environmental Prediction (NCEP). In regions with abundant conventional data coverage, where the MSU has no major influence on the reanalysis, temperature anomalies obtained from microwave sounders, radiosondes and from both reanalyses agree reasonably. Where coverage is insufficient, in particular over the tropical oceans, large differences are found between the MSU and either reanalysis. These differences apparently relate to changes in the satellite data availability and to differing satellite retrieval methodologies, to which both reanalyses are quite sensitive over the oceans. For NCEP, this results from the use of raw radiances directly incorporated into the analysis, which make the reanalysis sensitive to changes in the underlying algorithms, e.g. those introduced in August 1992. For ERA, the bias-correction of the one-dimensional variational analysis may introduce an error when the satellite relative to which the correction is calculated is biased itself or when radiances change on a time scale longer than a couple of months, e.g. due to orbit decay. ERA inhomogeneities are apparent in April 1985, October/November 1986 and April 1989. These dates can be identified with the replacements of satellites. It is possible that a negative bias in the sea surface temperatures (SSTs) used in the reanalyses may have been introduced over the period of the satellite record. This could have resulted from a decrease in the number of ship measurements, a concomitant increase in the importance of satellite-derived SSTs, and a likely cold bias in the latter. Alternately, a warm bias in SSTs could have been caused by an increase in the percentage of buoy measurements (relative to deeper ship intake measurements) in the tropical Pacific. No indications for uncorrected inhomogeneities of land surface temperatures could be found. Near-surface temperatures have biases in the boundary layer in both reanalyses, presumably due to the incorrect treatment of snow cover. The increase of near-surface compared to lower tropospheric temperatures in the last two decades may be due to a combination of several factors, including high-latitude near-surface winter warming due to an enhanced NAO and upper-tropospheric cooling due to stratospheric ozone decrease.
Resumo:
Winter storms are among the most important natural hazards affecting Europe. We quantify changes in storm frequency and intensity over the North Atlantic and Europe under future climate scenarios in terms of return periods (RPs) considering uncertainties due to both sampling and methodology. RPs of North Atlantic storms' minimum central pressure (CP) and maximum vorticity (VOR) remain unchanged by 2100 for both the A1B and A2 scenarios compared to the present climate. Whereas shortened RPs for VOR of all intensities are detected for the area between British Isles/North-Sea/western Europe as early as 2040. However, the changes in storm VOR RP may be unrealistically large: a present day 50 (20) year event becomes approximately a 9 (5.5) year event in both A1B and A2 scenarios by 2100. The detected shortened RPs of storms implies a higher risk of occurrence of damaging wind events over Europe.
Resumo:
We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop–climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty.
Resumo:
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
Resumo:
This paper investigates the role of credit and liquidity factors in explaining corporate CDS price changes during normal and crisis periods. We find that liquidity risk is more important than firm-specific credit risk regardless of market conditions. Moreover, in the period prior to the recent “Great Recession” credit risk plays no role in explaining CDS price changes. The dominance of liquidity effects casts serious doubts on the relevance of CDS price changes as an indicator of default risk dynamics. Our results show how multiple liquidity factors including firm specific and aggregate liquidity proxies as well as an asymmetric information measure are critical determinants of CDS price variations. In particular, the impact of informed traders on the CDS price increases when markets are characterised by higher uncertainty, which supports concerns of insider trading during the crisis.
Resumo:
Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1, 3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.