90 resultados para Additive Gaussian noise


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a polynomial-based noise variance estimator for multiple-input multiple-output single-carrier block transmission (MIMO-SCBT) systems. It is shown that the optimal pilots for noise variance estimation satisfy the same condition as that for channel estimation. Theoretical analysis indicates that the proposed estimator is statistically more efficient than the conventional sum of squared residuals (SSR) based estimator. Furthermore, we obtain an efficient implementation of the estimator by exploiting its special structure. Numerical results confirm our theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize the popular ensemble Kalman filter to an ensemble transform filter, in which the prior distribution can take the form of a Gaussian mixture or a Gaussian kernel density estimator. The design of the filter is based on a continuous formulation of the Bayesian filter analysis step. We call the new filter algorithm the ensemble Gaussian-mixture filter (EGMF). The EGMF is implemented for three simple test problems (Brownian dynamics in one dimension, Langevin dynamics in two dimensions and the three-dimensional Lorenz-63 model). It is demonstrated that the EGMF is capable of tracking systems with non-Gaussian uni- and multimodal ensemble distributions. Copyright © 2011 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Squirmish at the Oasis takes its name from Luigi Russolo's fourth noise network 'Skirmish at the Oasis' performed in Milan in 1913. 100 years on the Agency of Noise contemplate changes in technology and the culture industry that provoke new questions around the deliberate use of noise within music and art. Through live acts of enquiry and experimentation five artists unravel paradoxes associated with the use of noise in art, music and the gallery space. The works challenge tensions, contradictions and possible oxymorons that emerge through the use and acceptance of noise within an artistic framework. Featuring: DAISY DIXON / GRAHAM DUNNING / POLLYFIBRE / DANE SUTHERLAND / MARNIE WATTS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect of a non-Gaussian prior. The observation impact is measured in three ways: the sensitivity of the analysis to the observations, the mutual information, and the relative entropy. These three measures have all been studied in the case of Gaussian data assimilation and, in this case, have a known analytical form. It is shown that the analysis sensitivity can also be derived analytically when at least one of the prior or likelihood is Gaussian. This derivation shows an interesting asymmetry in the relationship between analysis sensitivity and analysis error covariance when the two different sources of non-Gaussian structure are considered (likelihood vs. prior). This is illustrated for a simple scalar case and used to infer the effect of the non-Gaussian structure on mutual information and relative entropy, which are more natural choices of metric in non-Gaussian data assimilation. It is concluded that approximating non-Gaussian error distributions as Gaussian can give significantly erroneous estimates of observation impact. The degree of the error depends not only on the nature of the non-Gaussian structure, but also on the metric used to measure the observation impact and the source of the non-Gaussian structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives A pharmacy Central Intravenous Additives Service (CIVAS) provides ready to use injectable medicines. However, manipulation of a licensed injectable medicine may significantly alter the stability of drug(s) in the final product. The aim of this study was to develop a stability indicating assay for CIVAS produced dobutamine 500 mg in 50 ml dextrose 1% (w/v) prefilled syringes, and to allocate a suitable shelf life. Methods A stability indicating high performance liquid chromatography (HPLC) assay was established for dobutamine. The stability of dobutamine prefilled syringes was evaluated under storage conditions of 4°C (protected from light), room temperature (protected from light), room temperature (exposed to light) and 40°C (protected from light) at various time points (up to 42 days). Results An HPLC method employing a Hypersil column, mobile phase (pH=4.0) consisting of 82:12:6 (v/v/v) 0.05 M KH2PO4:acetonitrile:methanol plus 0.3% (v/v) triethylamine with UV detection at λ=280 nm was specific for dobutamine. Under different storage conditions only samples stored at 40°C showed greater than 5% degradation (5.08%) at 42 days and had the shortest T95% based on this criterion (44.6 days compared with 111.4 days for 4°C). Exposure to light also reduced dobutamine stability. Discolouration on storage was the limiting factor in shelf life allocation, even when dobutamine remained within 5% of the initial concentration. Conclusions A stability indicating HPLC assay for dobutamine was developed. The shelf life recommended for the CIVAS product was 42 days at 4°C and 35 days at room temperature when protected from light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ships and wind turbines generate noise, which can have a negative impact on marine mammal populations by scaring animals away. Effective modelling of how this affects the populations has to take account of the location and timing of disturbances. Here we construct an individual-based model of harbour porpoises in the Inner Danish Waters. Individuals have their own energy budgets constructed using established principles of physiological ecology. Data are lacking on the spatial distribution of food which is instead inferred from knowledge of time-varying porpoise distributions. The model produces plausible patterns of population dynamics and matches well the age distribution of porpoises caught in by-catch. It estimates the effect of existing wind farms as a 10% reduction in population size when food recovers fast (after two days). Proposed new wind farms and ships do not result in further population declines. The population is however sensitive to variations in mortality resulting from by-catch and to the speed at which food recovers after being depleted. If food recovers slowly the effect of wind turbines becomes negligible, whereas ships are estimated to have a significant negative impact on the population. Annual by-catch rates ≥10% lead to monotonously decreasing populations and to extinction, and even the estimated by-catch rate from the adjacent area (approximately 4.1%) has a strong impact on the population. This suggests that conservation efforts should be more focused on reducing by-catch in commercial gillnet fisheries than on limiting the amount of anthropogenic noise. Individual-based models are unique in their ability to take account of the location and timing of disturbances and to show their likely effects on populations. The models also identify deficiencies in the existing database and can be used to set priorities for future field research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning low dimensional manifold from highly nonlinear data of high dimensionality has become increasingly important for discovering intrinsic representation that can be utilized for data visualization and preprocessing. The autoencoder is a powerful dimensionality reduction technique based on minimizing reconstruction error, and it has regained popularity because it has been efficiently used for greedy pretraining of deep neural networks. Compared to Neural Network (NN), the superiority of Gaussian Process (GP) has been shown in model inference, optimization and performance. GP has been successfully applied in nonlinear Dimensionality Reduction (DR) algorithms, such as Gaussian Process Latent Variable Model (GPLVM). In this paper we propose the Gaussian Processes Autoencoder Model (GPAM) for dimensionality reduction by extending the classic NN based autoencoder to GP based autoencoder. More interestingly, the novel model can also be viewed as back constrained GPLVM (BC-GPLVM) where the back constraint smooth function is represented by a GP. Experiments verify the performance of the newly proposed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop an on-line Gaussian mixture density estimator (OGMDE) in the complex-valued domain to facilitate adaptive minimum bit-error-rate (MBER) beamforming receiver for multiple antenna based space-division multiple access systems. Specifically, the novel OGMDE is proposed to adaptively model the probability density function of the beamformer’s output by tracking the incoming data sample by sample. With the aid of the proposed OGMDE, our adaptive beamformer is capable of updating the beamformer’s weights sample by sample to directly minimize the achievable bit error rate (BER). We show that this OGMDE based MBER beamformer outperforms the existing on-line MBER beamformer, known as the least BER beamformer, in terms of both the convergence speed and the achievable BER.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct a quasi-sure version (in the sense of Malliavin) of geometric rough paths associated with a Gaussian process with long-time memory. As an application we establish a large deviation principle (LDP) for capacities for such Gaussian rough paths. Together with Lyons' universal limit theorem, our results yield immediately the corresponding results for pathwise solutions to stochastic differential equations driven by such Gaussian process in the sense of rough paths. Moreover, our LDP result implies the result of Yoshida on the LDP for capacities over the abstract Wiener space associated with such Gaussian process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary intervention studies have shown that flavanols and inorganic nitrate can improve vascular function, suggesting that these two bioactives may be responsible for beneficial health effects of diets rich in fruits and vegetables. We aimed to study interactions between cocoa flavanols (CF) and nitrate, focusing on absorption, bioavailability, excretion, and efficacy to increase endothelial function. In a double-blind randomized, dose-response crossover study, flow-mediated dilation (FMD) was measured in 15 healthy subjects before and at 1, 2, 3, and 4 h after consumption of CF (1.4-10.9 mg/kg bw) or nitrate (0.1-10 mg/kg bw). To study flavanol-nitrate interactions, an additional intervention trial was performed with nitrate and CF taken in sequence at low and high amounts. FMD was measured before (0 h) and at 1h after ingestion of nitrate (3 or 8.5 mg/kg bw) or water. Then subjects received a CF drink (2.7 or 10.9 mg/kg bw) or a micro- and macronutrient-matched CF-free drink. FMD was measured at 1, 2, and 4 h thereafter. Blood and urine samples were collected and assessed for CF and nitric oxide (NO) metabolites with HPLC and gas-phase reductive chemiluminescence. Finally, intragastric formation of NO after CF and nitrate consumption was investigated. Both CF and nitrate induced similar intake-dependent increases in FMD. Maximal values were achieved at 1 h postingestion and gradually decreased to reach baseline values at 4 h. These effects were additive at low intake levels, whereas CF did not further increase FMD after high nitrate intake. Nitrate did not affect flavanol absorption, bioavailability, or excretion, but CF enhanced nitrate-related gastric NO formation and attenuated the increase in plasma nitrite after nitrate intake. Both flavanols and inorganic nitrate can improve endothelial function in healthy subjects at intake amounts that are achievable with a normal diet. Even low dietary intake of these bioactives may exert relevant effects on endothelial function when ingested together.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cluster of three texts following a conference panel on the Her Noise research and exhibition project (2005 - present, curated by Lina Dzuverovic and Anne Hilde Neset) in 2013 held at the 'Women in Music' Conference in New York. The articles have been published in Volume 20 of Women and Music: A Journal of Gender and Culture: “Intimate Publics in the Her Noise Archive,” by Holly Ingleton “Twice Erased: The silencing of Feminisms in Her Noise,” by Lina Dzuverovic “Why Not Our Voices? by Cathy Lane

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The co-polar correlation coefficient (ρhv) has many applications, including hydrometeor classification, ground clutter and melting layer identification, interpretation of ice microphysics and the retrieval of rain drop size distributions (DSDs). However, we currently lack the quantitative error estimates that are necessary if these applications are to be fully exploited. Previous error estimates of ρhv rely on knowledge of the unknown "true" ρhv and implicitly assume a Gaussian probability distribution function of ρhv samples. We show that frequency distributions of ρhv estimates are in fact highly negatively skewed. A new variable: L = -log10(1 - ρhv) is defined, which does have Gaussian error statistics, and a standard deviation depending only on the number of independent radar pulses. This is verified using observations of spherical drizzle drops, allowing, for the first time, the construction of rigorous confidence intervals in estimates of ρhv. In addition, we demonstrate how the imperfect co-location of the horizontal and vertical polarisation sample volumes may be accounted for. The possibility of using L to estimate the dispersion parameter (µ) in the gamma drop size distribution is investigated. We find that including drop oscillations is essential for this application, otherwise there could be biases in retrieved µ of up to ~8. Preliminary results in rainfall are presented. In a convective rain case study, our estimates show µ to be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a simple exponential DSD is assumed.