91 resultados para Adaptive system theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social tagging has become very popular around the Internet as well as in research. The main idea behind tagging is to allow users to provide metadata to the web content from their perspective to facilitate categorization and retrieval. There are many factors that influence users' tag choice. Many studies have been conducted to reveal these factors by analysing tagging data. This paper uses two theories to identify these factors, namely the semiotics theory and activity theory. The former treats tags as signs and the latter treats tagging as an activity. The paper uses both theories to analyse tagging behaviour by explaining all aspects of a tagging system, including tags, tagging system components and the tagging activity. The theoretical analysis produced a framework that was used to identify a number of factors. These factors can be considered as categories that can be consulted to redirect user tagging choice in order to support particular tagging behaviour, such as cross-lingual tagging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tagging provides support for retrieval and categorization of online content depending on users' tag choice. A number of models of tagging behaviour have been proposed to identify factors that are considered to affect taggers, such as users' tagging history. In this paper, we use Semiotics Analysis and Activity theory, to study the effect the system designer has over tagging behaviour. The framework we use shows the components that comprise the tagging system and how they interact together to direct tagging behaviour. We analysed two collaborative tagging systems: CiteULike and Delicious by studying their components by applying our framework. Using datasets from both systems, we found that 35% of CiteULike users did not provide tags compared to only 0.1% of Delicious users. This was directly linked to the type of tools used by the system designer to support tagging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a new adaptive nonlinear equalizer relying on a radial basis function (RBF) model, which is designed based on the minimum bit error rate (MBER) criterion, in the system setting of the intersymbol interference channel plus a co-channel interference. Our proposed algorithm is referred to as the on-line mixture of Gaussians estimator aided MBER (OMG-MBER) equalizer. Specifically, a mixture of Gaussians based probability density function (PDF) estimator is used to model the PDF of the decision variable, for which a novel on-line PDF update algorithm is derived to track the incoming data. With the aid of this novel on-line mixture of Gaussians based sample-by-sample updated PDF estimator, our adaptive nonlinear equalizer is capable of updating its equalizer’s parameters sample by sample to aim directly at minimizing the RBF nonlinear equalizer’s achievable bit error rate (BER). The proposed OMG-MBER equalizer significantly outperforms the existing on-line nonlinear MBER equalizer, known as the least bit error rate equalizer, in terms of both the convergence speed and the achievable BER, as is confirmed in our simulation study

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last 30 years, significant debate has taken place regarding multilevel research. However, the extent to which multilevel research is overtly practiced remains to be examined. This article analyzes 10 years of organizational research within a multilevel framework (from 2001 to 2011). The goals of this article are (a) to understand what has been done, during this decade, in the field of organizational multilevel research and (b) to suggest new arenas of research for the next decade. A total of 132 articles were selected for analysis through ISI Web of Knowledge. Through a broad-based literature review, results suggest that there is equilibrium between the amount of empirical and conceptual papers regarding multilevel research, with most studies addressing the cross-level dynamics between teams and individuals. In addition, this study also found that the time still has little presence in organizational multilevel research. Implications, limitations, and future directions are addressed in the end. Organizations are made of interacting layers. That is, between layers (such as divisions, departments, teams, and individuals) there is often some degree of interdependence that leads to bottom-up and top-down influence mechanisms. Teams and organizations are contexts for the development of individual cognitions, attitudes, and behaviors (top-down effects; Kozlowski & Klein, 2000). Conversely, individual cognitions, attitudes, and behaviors can also influence the functioning and outcomes of teams and organizations (bottom-up effects; Arrow, McGrath, & Berdahl, 2000). One example is when the rewards system of one organization may influence employees’ intention to quit and the existence or absence of extra role behaviors. At the same time, many studies have showed the importance of bottom-up emergent processes that yield higher level phenomena (Bashshur, Hernández, & González-Romá, 2011; Katz-Navon & Erez, 2005; Marques-Quinteiro, Curral, Passos, & Lewis, in press). For example, the affectivity of individual employees may influence their team’s interactions and outcomes (Costa, Passos, & Bakker, 2012). Several authors agree that organizations must be understood as multilevel systems, meaning that adopting a multilevel perspective is fundamental to understand real-world phenomena (Kozlowski & Klein, 2000). However, whether this agreement is reflected in practicing multilevel research seems to be less clear. In fact, how much is known about the quantity and quality of multilevel research done in the last decade? The aim of this study is to compare what has been proposed theoretically, concerning the importance of multilevel research, with what has really been empirically studied and published. First, this article outlines a review of the multilevel theory, followed by what has been theoretically “put forward” by researchers. Second, this article presents what has really been “practiced” based on the results of a review of multilevel studies published from 2001 to 2011 in business and management journals. Finally, some barriers and challenges to true multilevel research are suggested. This study contributes to multilevel research as it describes the last 10 years of research. It quantitatively depicts the type of articles being written, and where we can find the majority of the publications on empirical and conceptual work related to multilevel thinking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological models of an apoptotic process are studied using models describing a system of differential equations derived from reaction kinetics information. The mathematical model is re-formulated in a state-space robust control theory framework where parametric and dynamic uncertainty can be modelled to account for variations naturally occurring in biological processes. We propose to handle the nonlinearities using neural networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the criticism that system dynamics is a ‘hard’ or ‘deterministic’ systems approach. This criticism is seen to have four interpretations and each is addressed from the perspectives of social theory and systems science. Firstly, system dynamics is shown to offer not prophecies but Popperian predictions. Secondly, it is shown to involve the view that system structure only partially, not fully, determines human behaviour. Thirdly, the field's assumptions are shown not to constitute a grand content theory—though its structural theory and its attachment to the notion of causality in social systems are acknowledged. Finally, system dynamics is shown to be significantly different from systems engineering. The paper concludes that such confusions have arisen partially because of limited communication at the theoretical level from within the system dynamics community but also because of imperfect command of the available literature on the part of external commentators. Improved communication on theoretical issues is encouraged, though it is observed that system dynamics will continue to justify its assumptions primarily from the point of view of practical problem solving. The answer to the question in the paper's title is therefore: on balance, no.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper makes a theoretical case for using these two systems approaches together. The theoretical and methodological assumptions of system dynamics (SD) and soft system methodology (SSM) are briefly described and a partial critique is presented. SSM generates and represents diverse perspectives on a problem situation and addresses the socio-political elements of an intervention. However, it is weak in ensuring `dynamic coherence'. consistency between the intuitive behaviour resulting from proposed changes and behaviour deduced from ideas on causal structure. Conversely, SD examines causal structures and dynamic behaviours. However, whilst emphasising the need for a clear issue focus, it has little theory for generating and representing diverse issues. Also, there is no theory for facilitating sensitivity to socio-political elements. A synthesis of the two called ‘Holon Dynamics' is proposed. After an SSM intervention, a second stage continues the socio-political analysis and also operates within a new perspective which values dynamic coherence of the mental construct - the holon - which is capable of expressing the proposed changes. A model of this holon is constructed using SD and the changes are thus rendered `systemically desirable' in the additional sense that dynamic consistency has been confirmed. The paper closes with reflections on the proposal and the need for theoretical consistency when mixing tools is emphasised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the cho- sen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numer- ical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the effects of individual organisms on material cycles and energy fluxes within ecosystems is central to predicting the impacts of human-caused changes on climate, land use, and biodiversity. Here we present a theory that integrates metabolic (organism-based bottom-up) and systems (ecosystem-based top-down) approaches to characterize how the metabolism of individuals affects the flows and stores of materials and energy in ecosystems. The theory predicts how the average residence time of carbon molecules, total system throughflow (TST), and amount of recycling vary with the body size and temperature of the organisms and with trophic organization. We evaluate the theory by comparing theoretical predictions with outputs of numerical models designed to simulate diverse ecosystem types and with empirical data for real ecosystems. Although residence times within different ecosystems vary by orders of magnitude—from weeks in warm pelagic oceans with minute phytoplankton producers to centuries in cold forests with large tree producers—as predicted, all ecosystems fall along a single line: residence time increases linearly with slope = 1.0 with the ratio of whole-ecosystem biomass to primary productivity (B/P). TST was affected predominantly by primary productivity and recycling by the transfer of energy from microbial decomposers to animal consumers. The theory provides a robust basis for estimating the flux and storage of energy, carbon, and other materials in terrestrial, marine, and freshwater ecosystems and for quantifying the roles of different kinds of organisms and environments at scales from local ecosystems to the biosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the effect on balance of a number of Schur product-type localization schemes which have been designed with the primary function of reducing spurious far-field correlations in forecast error statistics. The localization schemes studied comprise a non-adaptive scheme (where the moderation matrix is decomposed in a spectral basis), and two adaptive schemes, namely a simplified version of SENCORP (Smoothed ENsemble COrrelations Raised to a Power) and ECO-RAP (Ensemble COrrelations Raised to A Power). The paper shows, we believe for the first time, how the degree of balance (geostrophic and hydrostatic) implied by the error covariance matrices localized by these schemes can be diagnosed. Here it is considered that an effective localization scheme is one that reduces spurious correlations adequately but also minimizes disruption of balance (where the 'correct' degree of balance or imbalance is assumed to be possessed by the unlocalized ensemble). By varying free parameters that describe each scheme (e.g. the degree of truncation in the schemes that use the spectral basis, the 'order' of each scheme, and the degree of ensemble smoothing), it is found that a particular configuration of the ECO-RAP scheme is best suited to the convective-scale system studied. According to our diagnostics this ECO-RAP configuration still weakens geostrophic and hydrostatic balance, but overall this is less so than for other schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptive governance is the use of novel approaches within policy to support experimentation and learning. Social learning reflects the engagement of interdependent stakeholders within this learning. Much attention has focused on these concepts as a solution for resilience in governing institutions in an uncertain climate; resilience representing the ability of a system to absorb shock and to retain its function and form through reorganisation. However, there are still many questions to how these concepts enable resilience, particularly in vulnerable, developing contexts. A case study from Uganda presents how these concepts promote resilient livelihood outcomes among rural subsistence farmers within a decentralised governing framework. This approach has the potential to highlight the dynamics and characteristics of a governance system which may manage change. The paper draws from the enabling characteristics of adaptive governance, including lower scale dynamics of bonding and bridging ties and strong leadership. Central to these processes were learning platforms promoting knowledge transfer leading to improved self-efficacy, innovation and livelihood skills. However even though aspects of adaptive governance were identified as contributing to resilience in livelihoods, some barriers were identified. Reflexivity and multi-stakeholder collaboration were evident in governing institutions; however, limited self-organisation and vertical communication demonstrated few opportunities for shifts in governance, which was severely challenged by inequity, politicisation and elite capture. The paper concludes by outlining implications for climate adaptation policy through promoting the importance of mainstreaming adaptation alongside existing policy trajectories; highlighting the significance of collaborative spaces for stakeholders and the tackling of inequality and corruption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Budgeting system has been traditionally viewed as a control mechanism rather than a communication tool to facilitate the institutionalisation of organisational change. A good budgeting system not only reflects the organisational reality but also socially constructs the reality. This paper uses the structuration perspective to understand budget-related behaviour in a UK research-intensive university and especially, study the role of budgeting system in achieving organisational sustainability. Giddens’ structuration theory offers a valuable framework for the study of the duality of structure and emphasises on the structural properties of social systems. Based on the semi-structured interviews with top management and budget holders, it is concluded that in this specific context, budgeting system may place a significant role in establishing and legitimising institutional change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to critically examine the application of Predicted Mean Vote (PMV) in an air-conditioned environment in the hot-humid climate region. Experimental studies have been conducted in a climate chamber in Chongqing, China, from 2008 to 2010. A total of 440 thermal responses from participants were obtained. Data analysis reveals that the PMV overestimates occupants' mean thermal sensation in the warm environment (PMV > 0) with a mean bias of 0.296 in accordance with the ASHRAE thermal sensation scales. The Bland–Altman method has been applied to assess the agreement of the PMV and Actual Mean Vote (AMV) and reveals a lack of agreement between them. It is identified that habituation due to the past thermal experience of a long-term living in a specific region could stimulate psychological adaptation. The psychological adaptation can neutralize occupants’ actual thermal sensation by moderating the thermal sensibility of the skin. A thermal sensation empirical model and a PMV-revised index are introduced for air-conditioned indoor environments in hot-humid regions. As a result of habituation, the upper limit effective thermal comfort temperature SET* can be increased by 1.6 °C in a warm season based on the existing international standard. As a result, a great potential for energy saving from the air-conditioning system in summer could be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a novel on-line learning approach for radial basis function (RBF) neural network. Based on an RBF network with individually tunable nodes and a fixed small model size, the weight vector is adjusted using the multi-innovation recursive least square algorithm on-line. When the residual error of the RBF network becomes large despite of the weight adaptation, an insignificant node with little contribution to the overall system is replaced by a new node. Structural parameters of the new node are optimized by proposed fast algorithms in order to significantly improve the modeling performance. The proposed scheme describes a novel, flexible, and fast way for on-line system identification problems. Simulation results show that the proposed approach can significantly outperform existing ones for nonstationary systems in particular.