96 resultados para 770701 Air quality
Resumo:
Cities have developed into the hotspots of human economic activity. From the appearance of the first cities in the Neolithic to 21st century metropolis their impact on the environment has always been apparent. With more people living in cities than in rural environments now it becomes crucial to understand these environmental impacts. With the immergence of megacities in the 20th century and their continued growth in both, population and economic power, the environmental impact has reached the global scale. In this paper we examine megacity impacts on atmospheric composition and climate. We present basic concepts, discuss various definitions of footprints, summarize research on megacity impacts and assess the impact of megacity emissions on air quality and on the climate at the regional to global scale. The intention and ambition of this paper is to give a comprehensive but brief overview of the science with regard to megacities and the environment.
Resumo:
The Weather Research and Forecasting model was applied to analyze variations in the planetary boundary layer (PBL) structure over Southeast England including central and suburban London. The parameterizations and predictive skills of two nonlocal mixing PBL schemes, YSU and ACM2, and two local mixing PBL schemes, MYJ and MYNN2, were evaluated over a variety of stability conditions, with model predictions at a 3 km grid spacing. The PBL height predictions, which are critical for scaling turbulence and diffusion in meteorological and air quality models, show significant intra-scheme variance (> 20%), and the reasons are presented. ACM2 diagnoses the PBL height thermodynamically using the bulk Richardson number method, which leads to a good agreement with the lidar data for both unstable and stable conditions. The modeled vertical profiles in the PBL, such as wind speed, turbulent kinetic energy (TKE), and heat flux, exhibit large spreads across the PBL schemes. The TKE predicted by MYJ were found to be too small and show much less diurnal variation as compared with observations over London. MYNN2 produces better TKE predictions at low levels than MYJ, but its turbulent length scale increases with height in the upper part of the strongly convective PBL, where it should decrease. The local PBL schemes considerably underestimate the entrainment heat fluxes for convective cases. The nonlocal PBL schemes exhibit stronger mixing in the mean wind fields under convective conditions than the local PBL schemes and agree better with large-eddy simulation (LES) studies.
Resumo:
It is becoming increasingly important that we can understand and model flow processes in urban areas. Applications such as weather forecasting, air quality and sustainable urban development rely on accurate modelling of the interface between an urban surface and the atmosphere above. This review gives an overview of current understanding of turbulence generated by an urban surface up to a few building heights, the layer called the roughness sublayer (RSL). High quality datasets are also identified which can be used in the development of suitable parameterisations of the urban RSL. Datasets derived from physical and numerical modelling, and full-scale observations in urban areas now exist across a range of urban-type morphologies (e.g. street canyons, cubes, idealised and realistic building layouts). Results show that the urban RSL depth falls within 2 – 5 times mean building height and is not easily related to morphology. Systematic perturbations away from uniform layouts (e.g. varying building heights) have a significant impact on RSL structure and depth. Considerable fetch is required to develop an overlying inertial sublayer, where turbulence is more homogeneous, and some authors have suggested that the “patchiness” of urban areas may prevent inertial sublayers from developing at all. Turbulence statistics suggest similarities between vegetation and urban canopies but key differences are emerging. There is no consensus as to suitable scaling variables, e.g. friction velocity above canopy vs. square root of maximum Reynolds stress, mean vs. maximum building height. The review includes a summary of existing modelling practices and highlights research priorities.
Resumo:
Anthropogenic aerosols in the atmosphere have the potential to affect regional-scale land hydrology through solar dimming. Increased aerosol loading may have reduced historical surface evaporation over some locations, but the magnitude and extent of this effect is uncertain. Any reduction in evaporation due to historical solar dimming may have resulted in an increase in river flow. Here we formally detect and quantify the historical effect of changing aerosol concentrations, via solar radiation, on observed river flow over the heavily industrialized, northern extra-tropics. We use a state-of-the-art estimate of twentieth century surface meteorology as input data for a detailed land surface model, and show that the simulations capture the observed strong inter-annual variability in runoff in response to climatic fluctuations. Using statistical techniques, we identify a detectable aerosol signal in the observed river flow both over the combined region, and over individual river basins in Europe and North America. We estimate that solar dimming due to rising aerosol concentrations in the atmosphere around 1980 led to an increase in river runoff by up to 25% in the most heavily polluted regions in Europe. We propose that, conversely, these regions may experience reduced freshwater availability in the future, as air quality improvements are set to lower aerosol loading and solar dimming.
Resumo:
Site-specific meteorological forcing appropriate for applications such as urban outdoor thermal comfort simulations can be obtained using a newly coupled scheme that combines a simple slab convective boundary layer (CBL) model and urban land surface model (ULSM) (here two ULSMs are considered). The former simulates daytime CBL height, air temperature and humidity, and the latter estimates urban surface energy and water balance fluxes accounting for changes in land surface cover. The coupled models are tested at a suburban site and two rural sites, one irrigated and one unirrigated grass, in Sacramento, U.S.A. All the variables modelled compare well to measurements (e.g. coefficient of determination = 0.97 and root mean square error = 1.5 °C for air temperature). The current version is applicable to daytime conditions and needs initial state conditions for the CBL model in the appropriate range to obtain the required performance. The coupled model allows routine observations from distant sites (e.g. rural, airport) to be used to predict air temperature and relative humidity in an urban area of interest. This simple model, which can be rapidly applied, could provide urban data for applications such as air quality forecasting and building energy modelling, in addition to outdoor thermal comfort.
Resumo:
The Helsinki Urban Boundary-Layer Atmosphere Network (UrBAN: http://urban.fmi.fi) is a dedicated research-grade observational network where the physical processes in the atmosphere above the city are studied. Helsinki UrBAN is the most poleward intensive urban research observation network in the world and thus will allow studying some unique features such as strong seasonality. The network's key purpose is for the understanding of the physical processes in the urban boundary layer and associated fluxes of heat, momentum, moisture, and other gases. A further purpose is to secure a research-grade database, which can be used internationally to validate and develop numerical models of air quality and weather prediction. Scintillometers, a scanning Doppler lidar, ceilometers, a sodar, eddy-covariance stations, and radiometers are used. This equipment is supplemented by auxiliary measurements, which were primarily set up for general weather and/or air-quality mandatory purposes, such as vertical soundings and the operational Doppler radar network. Examples are presented as a testimony to the potential of the network for urban studies, such as (i) evidence of a stable boundary layer possibly coupled to an urban surface, (ii) the comparison of scintillometer data with sonic anemometry above an urban surface, (iii) the application of scanning lidar over a city, and (iv) combination of sodar and lidar to give a fuller range of sampling heights for boundary layer profiling.
Resumo:
The Chiado’s fire that affected the city centre of Lisbon (Portugal) occurred on 25th August 1988 and had a significant human and environmental impact. This fire was considered the most significant hazard to have occurred in Lisbon city centre after the major earthquake of 1755. A clear signature of this fire is found in the atmospheric electric field data recorded at Portela meteorological station about 8 km NE from the site where the fire started at Chiado. Measurements were made using a Benndorf electrograph with a probe at 1 m height. The atmospheric electric field reached 510 V/m when the wind direction was coming from SW to NE, favourable to the transport of the smoke plume from Chiado to Portela. Such observations agree with predictions using Hysplit air mass trajectory modelling and have been used to estimate the smoke concentration to be ~0.4 mg/m3. It is demonstrated that atmospheric electric field measurements were therefore extremely sensitive to Chiado’s fire. This result is of particular current interest in using networks of atmospheric electric field sensors to complement existing optical and meteorological observations for fire monitoring.
Resumo:
Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealised, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all three models showing an increase in surface temperature focussed in the northern hemisphere high latitudes, and a corresponding increase in global mean precipitation and run-off. Changes in precipitation and run-off patterns are driven mostly by a northward shift in the ITCZ, consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker forcing signal, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.
Resumo:
Weather, climate, water and related environmental conditions, including air quality, all have profound effects on cities. A growing importance is being attached to understanding and predicting atmospheric conditions and their interactions with other components of the Earth System in cities, at multiple scales. We highlight the need for: (1) development of high-resolution coupled environmental prediction models that include realistic city-specific processes, boundary conditions and fluxes; (2) enhanced observational systems to support (force, constrain, evaluate) these models to provide high quality forecasts for new urban services; (3) provision of meteorological and related environmental variables to aid protection of human health and the environment; (4) new targeted and customized delivery platforms using modern communication techniques, developed with users to ensure that services, advice and warnings result in appropriate action; and (5) development of new skill and capacity to make best use of technologies to deliver new services in complex, challenging and evolving city environments. We highlight the importance of a coordinated and strategic approach that draws on, but does not replicate, past work to maximize benefits to stakeholders.
Resumo:
There is a tendency to reduce ventilation rates and natural or hybrid ventilation systems to ensure the conservation of energy in school buildings. However, high indoor pollutant concentration, due to natural or hybrid ventilation systems may have a significant adverse impact on the health and academic performance of pupils and students. Reviewed evidence shows that this can be detrimental to health and wellbeing in schools because of the learner density within a small area, eventually indicating that CO2 concentrations can rise to very high levels (about 4000 ppm) in classrooms during occupancy periods. In South Africa’s naturally ventilated classrooms, it is not clear whether the environmental conditions are conducive for learning. In addition, natural ventilation will be minimized given the fact that in cold, wet or windy weather, doors and windows will commonly remain closed. Evidence from literature based studies indicates that the significance of ventilation techniques is not understood satisfactorily and additional information concerning naturally ventilated schools has to be provided for better design and policy formulation. To develop a thorough understanding of the environments in classrooms, many other parameters have to be considered as well, such as outdoor air quality, CO2 concentrations, temperature and relative humidity and safety issues that may be important drawbacks for naturally ventilated schools. The aim of this paper is to develop a conceptual understanding of methods that can be implemented to assess the effectiveness of naturally ventilated classrooms in Gauteng, South Africa. A theoretical concept with an embedded practical methodology have been proposed for the research programme to investigate the relationship between ventilation rates and learning in schools in Gauteng , a province in South Africa. It is important that existing and future school buildings must include adequate outdoor ventilation, control of moisture, and avoidance of indoor exposures to microbiologic and chemical substances considered likely to have adverse effects in South Africa. Adequate ventilation in classrooms is necessary to reduce and/or eradicate the transmission of indoor pollutants.
Resumo:
Ambient concentrations of trace elements with 2 h time resolution were measured in PM10–2.5, PM2.5–1.0 and PM1.0–0.3 size ranges at kerbside, urban background and rural sites in London during winter 2012. Samples were collected using rotating drum impactors (RDIs) and subsequently analysed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF). Quantification of kerb and urban increments (defined as kerb-to-urban and urban-to-rural concentration ratios, respectively), and assessment of diurnal and weekly variability provided insight into sources governing urban air quality and the effects of urban micro-environments on human exposure. Traffic-related elements yielded the highest kerb increments, with values in the range of 10.4 to 16.6 for SW winds (3.3–6.9 for NE) observed for elements influenced by brake wear (e.g. Cu, Sb, Ba) and 5.7 to 8.2 for SW (2.6–3.0 for NE) for other traffic-related processes (e.g. Cr, Fe, Zn). Kerb increments for these elements were highest in the PM10–2.5 mass fraction, roughly twice that of the PM1.0–0.3 fraction. These elements also showed the highest urban increments (~ 3.0), although no difference was observed between brake wear and other traffic-related elements. All elements influenced by traffic exhibited higher concentrations during morning and evening rush hours, and on weekdays compared to weekends, with the strongest trends observed at the kerbside site, and additionally enhanced by winds coming directly from the road, consistent with street canyon effects. Elements related to mineral dust (e.g. Al, Si, Ca, Sr) showed significant influences from traffic-induced resuspension, as evidenced by moderate kerb (3.4–5.4 for SW, 1.7–2.3 for NE) and urban (~ 2) increments and increased concentrations during peak traffic flow. Elements related to regional transport showed no significant enhancement at kerb or urban sites, with the exception of PM10–2.5 sea salt (factor of up to 2), which may be influenced by traffic-induced resuspension of sea and/or road salt. Heavy-duty vehicles appeared to have a larger effect than passenger vehicles on the concentrations of all elements influenced by resuspension (including sea salt) and wearing processes. Trace element concentrations in London were influenced by both local and regional sources, with coarse and intermediate fractions dominated by traffic-induced resuspension and wearing processes and fine particles influenced by regional transport.
Resumo:
A new generation of high-resolution (1 km) forecast models promises to revolutionize the prediction of hazardous weather such as windstorms, flash floods, and poor air quality. To realize this promise, a dense observing network, focusing on the lower few kilometers of the atmosphere, is required to verify these new forecast models with the ultimate goal of assimilating the data. At present there are insufficient systematic observations of the vertical profiles of water vapor, temperature, wind, and aerosols; a major constraint is the absence of funding to install new networks. A recent research program financed by the European Union, tasked with addressing this lack of observations, demonstrated that the assimilation of observations from an existing wind profiler network reduces forecast errors, provided that the individual instruments are strategically located and properly maintained. Additionally, it identified three further existing European networks of instruments that are currently underexploited, but with minimal expense they could deliver quality-controlled data to national weather services in near–real time, so the data could be assimilated into forecast models. Specifically, 1) several hundred automatic lidars and ceilometers can provide backscatter profiles associated with aerosol and cloud properties and structures with 30-m vertical resolution every minute; 2) more than 20 Doppler lidars, a fairly new technology, can measure vertical and horizontal winds in the lower atmosphere with a vertical resolution of 30 m every 5 min; and 3) about 30 microwave profilers can estimate profiles of temperature and humidity in the lower few kilometers every 10 min. Examples of potential benefits from these instruments are presented.
Resumo:
Demand for good indoor air quality is increasing as people recorgnise the risks to their health and productivity from indoor pollutants. There is a tendency to reduce ventilation rates to ensure energy conservation in buildings; in this instance schools. However, evidence reviewed shows that this can be detrimental to health and wellbeing in schools because of the learner density within a small area (1.8 - 2.4m2/person); eventually indicating that carbon dioxide (CO2) levels can rise to very high levels in classroom occupancy periods. A preliminary study to investigate the impact of indoor environmental parameters has been performed in a secondary school classroom in Pretoria, South Africa. Factors monitored include temperature, relative humidity, lighting, air velocities and CO2 concentrations. From the results low air velocities are recorded (i.e. 0.1-0.3m/s) impacting on the retention of CO2 build-up in the classroom. Results presented in this paper are the initial findings of ongoing research.
Resumo:
The effects of elevated CO2 on leaf development in three genotypes of Populus were investigated during canopy closure, following exposure to elevated CO2 over 3 yr using free-air enrichment.• Leaf quality was altered such that nitrogen concentration per unit d. wt (Nmass) declined on average by 22 and 13% for sun and shade leaves, respectively, in elevated CO2. There was little evidence that this was the result of ‘dilution’ following accumulation of nonstructural carbohydrates. Most likely, this was the result of increased leaf thickness. Specific leaf area declined in elevated CO2 on average by 29 and 5% for sun and shade leaves, respectively.• Autumnal senescence was delayed in elevated CO2 with a 10% increase in the number of days at which 50% leaf loss occurred in elevated as compared with ambient CO2.• These data suggest that changes in leaf quality may be predicted following long-term acclimation of fast-growing forest trees to elevated CO2, and that canopy longevity may increase, with important implications for forest productivity.
Resumo:
The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches'' is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed.