175 resultados para 0401 Atmospheric Sciences


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An aquaplanet model is used to study the nature of the highly persistent low-frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, the authors find that a quasi-stationary wave 5 belongs to a wave packet obeying a well-defined dispersion relation with eastward group velocity. The components of the dispersion relation with k ≥ 5 baroclinically convert eddy available potential energy into eddy kinetic energy, whereas those with k < 5 are baroclinically neutral. In agreement with Green’s model of baroclinic instability, wave 5 is weakly unstable, and the inverse energy cascade, which had been previously proposed as a main forcing for this type of wave, only acts as a positive feedback on its predominantly baroclinic energetics. The quasi-stationary wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. It is also found that the Pedlosky bounds on the phase speed of unstable waves provide guidance in explaining the latitudinal structure of the energy conversion, which is shown to be more enhanced where the zonal westerly surface wind is weaker. The wave’s energy is then trapped in the waveguide created by the upper tropospheric jet stream. In agreement with Green’s theory, as the equator-to-pole SST difference is reduced, the stationary marginally stable component shifts toward higher wavenumbers, while wave 5 becomes neutral and westward propagating. Some properties of the aquaplanet quasi-stationary waves are found to be in interesting agreement with a low frequency wave observed by Salby during December–February in the Southern Hemisphere so that this perspective on low frequency variability, apart from its value in terms of basic geophysical fluid dynamics, might be of specific interest for studying the earth’s atmosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Opera- tional Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) cali- bration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retriev- als is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The climatology of a stratosphere-resolving version of the Met Office’s climate model is studied and validated against ECMWF reanalysis data. Ensemble integrations are carried out at two different horizontal resolutions. Along with a realistic climatology and annual cycle in zonal mean zonal wind and temperature, several physical effects are noted in the model. The time of final warming of the winter polar vortex is found to descend monotonically in the Southern Hemisphere, as would be expected for purely radiative forcing. In the Northern Hemisphere, however, the time of final warming is driven largely by dynamical effects in the lower stratosphere and radiative effects in the upper stratosphere, leading to the earliest transition to westward winds being seen in the midstratosphere. A realistic annual cycle in stratospheric water vapor concentrations—the tropical “tape recorder”—is captured. Tropical variability in the zonal mean zonal wind is found to be in better agreement with the reanalysis for the model run at higher horizontal resolution because the simulated quasi-biennial oscillation has a more realistic amplitude. Unexpectedly, variability in the extratropics becomes less realistic under increased resolution because of reduced resolved wave drag and increased orographic gravity wave drag. Overall, the differences in climatology between the simulations at high and moderate horizontal resolution are found to be small.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A theoretical framework is developed for the evolution of baroclinic waves with latent heat release parameterized in terms of vertical velocity. Both wave–conditional instability of the second kind (CISK) and large-scale rain approaches are included. The new quasigeostrophic framework covers evolution from general initial conditions on zonal flows with vertical shear, planetary vorticity gradient, a lower boundary, and a tropopause. The formulation is given completely in terms of potential vorticity, enabling the partition of perturbations into Rossby wave components, just as for the dry problem. Both modal and nonmodal development can be understood to a good approximation in terms of propagation and interaction between these components alone. The key change with moisture is that growing normal modes are described in terms of four counterpropagating Rossby wave (CRW) components rather than two. Moist CRWs exist above and below the maximum in latent heating, in addition to the upper- and lower-level CRWs of dry theory. Four classifications of baroclinic development are defined by quantifying the strength of interaction between the four components and identifying the dominant pairs, which range from essentially dry instability to instability in the limit of strong heating far from boundaries, with type-C cyclogenesis and diabatic Rossby waves being intermediate types. General initial conditions must also include passively advected residual PV, as in the dry problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent literature has described a “transition zone” between the average top of deep convection in the Tropics and the stratosphere. Here transport across this zone is investigated using an offline trajectory model. Particles were advected by the resolved winds from the European Centre for Medium-Range Weather Forecasts reanalyses. For each boreal winter clusters of particles were released in the upper troposphere over the four main regions of tropical deep convection (Indonesia, central Pacific, South America, and Africa). Most particles remain in the troposphere, descending on average for every cluster. The horizontal components of 5-day trajectories are strongly influenced by the El Niño–Southern Oscillation (ENSO), but the Lagrangian average descent does not have a clear ENSO signature. Tropopause crossing locations are first identified by recording events when trajectories from the same release regions cross the World Meteorological Organization lapse rate tropopause. Most crossing events occur 5–15 days after release, and 30-day trajectories are sufficiently long to estimate crossing number densities. In a further two experiments slight excursions across the lapse rate tropopause are differentiated from the drift deeper into the stratosphere by defining the “tropopause zone” as a layer bounded by the average potential temperature of the lapse rate tropopause and the profile temperature minimum. Transport upward across this zone is studied using forward trajectories released from the lower bound and back trajectories arriving at the upper bound. Histograms of particle potential temperature (θ) show marked differences between the transition zone, where there is a slow spread in θ values about a peak that shifts slowly upward, and the troposphere below 350 K. There forward trajectories experience slow radiative cooling interspersed with bursts of convective heating resulting in a well-mixed distribution. In contrast θ histograms for back trajectories arriving in the stratosphere have two distinct peaks just above 300 and 350 K, indicating the sharp change from rapid convective heating in the well-mixed troposphere to slow ascent in the transition zone. Although trajectories slowly cross the tropopause zone throughout the Tropics, all three experiments show that most trajectories reaching the stratosphere from the lower troposphere within 30 days do so over the west Pacific warm pool. This preferred location moves about 30°–50° farther east in an El Niño year (1982/83) and about 30° farther west in a La Niña year (1988/89). These results could have important implications for upper-troposphere–lower-stratosphere pollution and chemistry studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The usefulness of any simulation of atmospheric tracers using low-resolution winds relies on both the dominance of large spatial scales in the strain and time dependence that results in a cascade in tracer scales. Here, a quantitative study on the accuracy of such tracer studies is made using the contour advection technique. It is shown that, although contour stretching rates are very insensitive to the spatial truncation of the wind field, the displacement errors in filament position are sensitive. A knowledge of displacement characteristics is essential if Lagrangian simulations are to be used for the inference of airmass origin. A quantitative lower estimate is obtained for the tracer scale factor (TSF): the ratio of the smallest resolved scale in the advecting wind field to the smallest “trustworthy” scale in the tracer field. For a baroclinic wave life cycle the TSF = 6.1 ± 0.3 while for the Northern Hemisphere wintertime lower stratosphere the TSF = 5.5 ± 0.5, when using the most stringent definition of the trustworthy scale. The similarity in the TSF for the two flows is striking and an explanation is discussed in terms of the activity of potential vorticity (PV) filaments. Uncertainty in contour initialization is investigated for the stratospheric case. The effect of smoothing initial contours is to introduce a spinup time, after which wind field truncation errors take over from initialization errors (2–3 days). It is also shown that false detail from the proliferation of finescale filaments limits the useful lifetime of such contour advection simulations to 3σ−1 days, where σ is the filament thinning rate, unless filaments narrower than the trustworthy scale are removed by contour surgery. In addition, PV analysis error and diabatic effects are so strong that only PV filaments wider than 50 km are at all believable, even for very high-resolution winds. The minimum wind field resolution required to accurately simulate filaments down to the erosion scale in the stratosphere (given an initial contour) is estimated and the implications for the modeling of atmospheric chemistry are briefly discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A methodology for identifying equatorial waves is used to analyze the multilevel 40-yr ECMWF Re-Analysis (ERA-40) data for two different years (1992 and 1993) to investigate the behavior of the equatorial waves under opposite phases of the quasi-biennial oscillation (QBO). A comprehensive view of 3D structures and of zonal and vertical propagation of equatorial Kelvin, westward-moving mixed Rossby–gravity (WMRG), and n = 1 Rossby (R1) waves in different QBO phases is presented. Consistent with expectation based on theory, upward-propagating Kelvin waves occur more frequently during the easterly QBO phase than during the westerly QBO phase. However, the westward-moving WMRG and R1 waves show the opposite behavior. The presence of vertically propagating equatorial waves in the stratosphere also depends on the upper tropospheric winds and tropospheric forcing. Typical propagation parameters such as the zonal wavenumber, zonal phase speed, period, vertical wavelength, and vertical group velocity are found. In general, waves in the lower stratosphere have a smaller zonal wavenumber, shorter period, faster phase speed, and shorter vertical wavelength than those in the upper troposphere. All of the waves in the lower stratosphere show an upward group velocity and downward phase speed. When the phase of the QBO is not favorable for waves to propagate, their phase speed in the lower stratosphere is larger and their period is shorter than in the favorable phase, suggesting Doppler shifting by the ambient flow and a filtering of the slow waves. Tropospheric WMRG and R1 waves in the Western Hemisphere also show upward phase speed and downward group velocity, with an indication of their forcing from middle latitudes. Although the waves observed in the lower stratosphere are dominated by “free” waves, there is evidence of some connection with previous tropical convection in the favorable year for the Kelvin waves in the warm water hemisphere and WMRG and R1 waves in the Western Hemisphere, which is suggestive of the importance of convective forcing for the existence of propagating coupled Kelvin waves and midlatitude forcing for the existence of coupled WMRG and R1 waves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mean state, variability and extreme variability of the stratospheric polar vortices, with an emphasis on the Northern Hemisphere vortex, are examined using 2-dimensional moment analysis and Extreme Value Theory (EVT). The use of moments as an analysis to ol gives rise to information about the vortex area, centroid latitude, aspect ratio and kurtosis. The application of EVT to these moment derived quantaties allows the extreme variability of the vortex to be assessed. The data used for this study is ECMWF ERA-40 potential vorticity fields on interpolated isentropic surfaces that range from 450K-1450K. Analyses show that the most extreme vortex variability occurs most commonly in late January and early February, consistent with when most planetary wave driving from the troposphere is observed. Composites around sudden stratospheric warming (SSW) events reveal that the moment diagnostics evolve in statistically different ways between vortex splitting events and vortex displacement events, in contrast to the traditional diagnostics. Histograms of the vortex diagnostics on the 850K (∼10hPa) surface over the 1958-2001 period are fitted with parametric distributions, and show that SSW events comprise the majority of data in the tails of the distributions. The distribution of each diagnostic is computed on various surfaces throughout the depth of the stratosphere, and shows that in general the vortex becomes more circular with higher filamentation at the upper levels. The Northern Hemisphere (NH) and Southern Hemisphere (SH) vortices are also compared through the analysis of their respective vortex diagnostics, and confirm that the SH vortex is less variable and lacks extreme events compared to the NH vortex. Finally extreme value theory is used to statistically mo del the vortex diagnostics and make inferences about the underlying dynamics of the polar vortices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The polar winter stratospheric vortex is a coherent structure that undergoes different types of deformation that can be revealed by the geometric invariant moments. Three moments are used—the aspect ratio, the centroid latitude, and the area of the vortex based on stratospheric data from the 40-yr ECMWF Re-Analysis (ERA-40) project—to study sudden stratospheric warmings. Hierarchical clustering combined with data image visualization techniques is used as well. Using the gap statistic, three optimal clusters are obtained based on the three geometric moments considered here. The 850-K potential vorticity field, as well as the vertical profiles of polar temperature and zonal wind, provides evidence that the clusters represent, respectively, the undisturbed (U), displaced (D), and split (S) states of the polar vortex. This systematic method for identifying and characterizing the state of the polar vortex using objective methods is useful as a tool for analyzing observations and as a test for climate models to simulate the observations. The method correctly identifies all previously identified major warmings and also identifies significant minor warmings where the atmosphere is substantially disturbed but does not quite meet the criteria to qualify as a major stratospheric warming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate estimates for the fall speed of natural hydrometeors are vital if their evolution in clouds is to be understood quantitatively. In this study, laboratory measurements of the terminal velocity vt for a variety of ice particle models settling in viscous fluids, along with wind-tunnel and field measurements of ice particles settling in air, have been analyzed and compared to common methods of computing vt from the literature. It is observed that while these methods work well for a number of particle types, they fail for particles with open geometries, specifically those particles for which the area ratio Ar is small (Ar is defined as the area of the particle projected normal to the flow divided by the area of a circumscribing disc). In particular, the fall speeds of stellar and dendritic crystals, needles, open bullet rosettes, and low-density aggregates are all overestimated. These particle types are important in many cloud types: aggregates in particular often dominate snow precipitation at the ground and vertically pointing Doppler radar measurements. Based on the laboratory data, a simple modification to previous computational methods is proposed, based on the area ratio. This new method collapses the available drag data onto an approximately universal curve, and the resulting errors in the computed fall speeds relative to the tank data are less than 25% in all cases. Comparison with the (much more scattered) measurements of ice particles falling in air show strong support for this new method, with the area ratio bias apparently eliminated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Empirical studies using satellite data and radiosondes have shown that precipitation increases with column water vapor (CWV) in the tropics, and that this increase is much steeper above some critical CWV value. Here, eight years of 1-min-resolution microwave radiometer and optical gauge data at Nauru Island are analyzed to better understand the relationships among CWV, column liquid water (CLW), and precipitation at small time scales. CWV is found to have large autocorrelation times compared with CLW and precipitation. Before precipitation events, CWV increases on both a synoptic-scale time period and a subsequent shorter time period consistent with mesoscale convective activity; the latter period is associated with the highest CWV levels. Probabilities of precipitation increase greatly with CWV. Given initial high CWV, this increased probability of precipitation persists at least 10–12 h. Even in periods of high CWV, however, probabilities of initial precipitation in a 5-min period remain low enough that there tends to be a lag before the start of the next precipitation event. This is consistent with precipitation occurring stochastically within environments containing high CWV, with the latter being established by a combination of synoptic-scale and mesoscale forcing.