103 resultados para 030200 INORGANIC CHEMISTRY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A diphenoxido-bridged dinuclear copper(II) complex, [Cu2L2(ClO4)(2)] (1), has been synthesized using a tridentate reduced Schiff base ligand, 2-[[2-(diethylamino)-ethylamino]methyl]phenol (HL). The addition of triethylamine to the methanolic solution of this complex produced a novel triple bridged (double phenoxido and single hydroxido) dinuclear copper(II) complex, [Cu2L2(OH)]ClO4 (2). Both complexes 1 and 2 were characterized by X-ray structural analyses, variable-temperature magnetic susceptibility measurements, and spectroscopic methods. In 1, the two phenoxido bridges are equatorial-equatorial and the species shows strong antiferromagnetic coupling with J = -615.6(6.1) cm(-1). The inclusion of the equatorial-equatorial hydroxido bridge in 2 changes the Cu center dot center dot center dot Cu distance from 3.018 angstrom (avg.) to 2.798 angstrom (avg.), the positions of the phenoxido bridges to axial-equatorial, and the magnetic coupling to ferromagnetic with J = 50.1(1.4) cm(-1). Using 3,5-di-tert-butylcatechol as the substrate, the catecholase activity of the complexes has been studied in a methanol solution; compound 2 shows higher catecholase activity (k(cat) = 233.4 h(-1)) than compound 1 (k(cat) = 93.6 h(-1)). Both complexes generate identical species in solution, and they are interconvertible simply by changing the pH of their solutions. The higher catecholase activity of 2 seems to be due to the presence of the OH group, which increases the pH of its solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three double phenoxido-bridged dinuclear nickel(II) complexes, namely [Ni-2(L-1)(2)(NCS)(2)] (1), [Ni-2(L-2)(2)(NCS)(2)] (2), and [Ni-2(L-3)(2)(NCS)(2)] (3) have been synthesized using the reduced tridentate Schiff-base ligands 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL1), 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL2), and 2-[1-(3-dimethylarnino-propylamino)-ethyl]-phenol (HL3), respectively. The coordination compounds have been characterized by X-ray structural analyses, magnetic-susceptibility measurements, and various spectroscopic methods. In all complexes, the nickel(II) ions are penta-coordinated in a square-pyramidal environment, which is severely distorted in the case of 1 (Addison parameter tau = 0.47) and 3 (tau = 0.29), while it is almost perfect for 2 (tau = 0.03). This arrangement leads to relatively strong antiferromagnetic interactions between the Ni(II) (S = 1) metal centers as mediated by double phenoxido bridges (with J values of -23.32 (1), -35.45 (2), and -34.02 (3) cm(3) K mol(-1), in the convention H = -2JS(1)S(2)). The catalytic activity of these Ni compounds has been investigated for the aerial oxidation of 3,5-di-tert-butylcatechol. Kinetic data analysis following Michaelis-Menten treatment reveals that the catecholase activity of the complexes is influenced by the flexibility of the ligand and also by the geometry around the metal ion. Electrospray ionization mass spectroscopy (ESI-MS) studies (in the positive mode) have been performed for all the coordination compounds in the presence of 3,5-DTBC to characterize potential complex-substrate intermediates. The mass-spectrometry data, corroborated by electron paramagnetic resonance (EPR) measurements, suggest that the metal centers are involved in the catecholase activity exhibited by the complexes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four new heteroleptic mononuclear complexes, [Cu(PPh3)2L1](1) {L1 = (C9H11O2CS2), [2-(4-methoxyphenyl)ethyl]xanthate}, [Cu(PPh3)2L2] (2) [L2 = (C6H7OCS2), benzylxanthate], [Cu(PPh3)2L3] (3) [L3 = (C5H9OCS2), (cyclobutylmethyl)xanthate] and [Cu(PPh3)2L4] (4) [L4 = (NC13H13NCS2), N-benzyl-N-(4-pyridylmethyl)dithiocarbamate], have been synthesized and characterized by using microanalysis, IR, UV/Vis, 1H, 13C and 31P NMR spectroscopy and X-ray crystallography; their photoluminescent behaviour and molecular electrical conductivity have been investigated. CuI possesses four-coordinate distorted tetrahedral geometry in all the complexes. All are weakly conducting and exhibit semiconductor behaviour in the studied 303363 K temperature range. Complex 4 shows striking luminescent behaviour emitting bluish green light at 480 nm in CH2Cl2 solution at room temperature

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An alternating hexameric water (H2O)(6) cluster and a chlorine-water cluster [Cl-2(H2O)(4)](2-) in the chair forms combine axially to each other to form a 1D chain [{Cl-2(H2O)(6)}(2-)](n) in complex [FeL2]Cl center dot(H2O)(3) (L=2-[(2-methylaminoethylimino)-methyl]-phenol)]. The water molecules display extensive H-bonding interactions with monomeric iron-organic units to form a hydrogen-bonded 2D supramolecular assembly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two new Mn(III) complexes of formulas [MnL1(N-3)(OMe)](2) (1) and [MnL2(N-3)(2)](n) (2) have been synthesized by using two tridentate NNO-donor Schiff base ligands HL1{(2-[(3-methylaminoethylimino)-methyl]-phenol)} and HL2 {(2-[1-(2-dimethylaminoethylimino)methyl]-phenol)}, respectively. Substitution of the H atom on the secondary amine group of the N-methyldiamine fragment of the Schiff base by a methyl group leads to a drastic structural change from a methoxido-bridged dimer (1) to a single mu(1,3)-azido-bridged 1D helical polymer (2). Both complexes were characterized by single-crystal X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The magnetic properties of compound I show the presence of weak ferromagnetic exchange interactions mediated by double methoiddo bridges (J = 0.95 cm(-1)). Compound 2 shows the existence of a weak antiferromangetic coupling along the chain (J = -8.5 cm(-1)) through the single mu(1,3)-N-3 bridge with a spin canting that leads to a long-range antiferromagnetic order at T-c approximate to 9.3 K and a canting leading to a weak ferromagnetic long-range order at T-c approximate to 8.5 K. It also exibits metamagnetic behavior at low temperatures with a critical field of ca.1.2 T due to the weak antiferromagnetic interchain interactions that appear in the canted ordered phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three new trinuclear heterometallic nickel(II)manganese(II) complexes, [(NiL)2Mn(NCS)2] (1), [(NiL)2Mn(NCO)2] (2), and [{NiL(EtOH)}2Mn(NO2)2]center dot 2EtOH (3), have been synthesized by using [NiL] as the so-called ligand complex [where H2L = N,N'-bis(salicylidene)-1,3-propanediamine] and have been structurally characterized. Crystal structure analyses revealed that complexes 1 and 2 are angular trinuclear species, in which two terminal four-coordinate square planar [NiL] moieties are coordinated to a central MnII through double phenoxido bridges. The MnII is in a six-coordinate distorted octahedral environment that is bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1) and cyanate (in 2). In complex 3, in addition to the double phenoxo bridge, the two terminal NiII ions are linked to the central MnII by means of a nitrite bridge (1?N:2?O) that, together with a coordinated ethanol molecule, gives rise to an octahedral environment around the NiII ions and consequently the structure becomes linear. Catecholase activity of these three complexes was examined by using 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. All three complexes mimic catecholase activity and the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first-order kinetics with respect to the catalyst. The EPR spectra of the complexes exhibit characteristic six line spectra, which indicate the presence of high-spin octahedral MnII species in solution state. The ESI-MS positive spectrum of 1 in the presence of 3,5-DTBC has been recorded to investigate possible complexsubstrate intermediates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New bifunctional pyrazole based ligands of the type [C3HR2N2CONR'] (where R = H or CH3; R' = CH3, C2H5, or (C3H7)-C-i) were prepared and characterized. The coordination chemistry of these ligands with uranyl nitrate and uranyl bis(dibenzoyl methanate) was studied with infrared (IR), H-1 NMR, electrospray-mass spectrometry (ES-MS), elemental analysis, and single crystal X-ray diffraction methods. The structure of compound [UO2(NO3)(2)(C3H3N2CON{C2H5}(2))] (2) shows that the uranium(VI) ion is surrounded by one nitrogen atom and seven oxygen atoms in a hexagonal bipyramidal geometry with the ligand acting as a bidentate chelating ligand and bonds through both the carbamoyl oxygen and pyrazolyl nitrogen atoms. In the structure of [UO2(NO3)(2)(H2O)(2)(C5H7N2CON {C2H5}(2))(2)], (5) the pyrazole figand acts as a second sphere ligand and hydrogen bonds to the water molecules through carbamoyl oxygen and pyrazolyl nitrogen atoms. The structure of [UO2(DBM)(2)C3H3N2CON{C2H5}(2)] (8) (where DBM = C6H5COCHCOC6H5) shows that the pyrazole ligand acts as a monodentate ligand and bonds through the carbamoyl oxygen to the uranyl group. The ES-MS spectra of 2 and 8 show that the ligand is similarly bonded to the metal ion in solution. Ab initio quantum chemical studies show that the steric effect plays the key role in complexation behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three new Mn(II) coordination compounds {[Mn(NCNCN)2(azpy)]·0.5azpy}n (1), {[Mn(NCS)2(azpy)(CH3OH)2]·azpy}n (2), and [Mn(azpy)2(H2O)4][Mn(azpy)(H2O)5]·4PF6·H2O·5.5azpy (3) (where azpy = 4,4'-azobis-(pyridine)) have been synthesized by self-assembly of the primary ligands, dicyanamide, thiocyanate, and hexafluorophosphate, respectively, together with azpy as the secondary spacer. All three complexes were characterized by elemental analyses, IR spectroscopy, thermal analyses, and single crystal X-ray crystallography. The structural analyses reveal that complex 1 forms a two-dimensional (2D) grid sheet motif These sheets assemble to form a microporous framework that incorporates coordination-free azpy by host-guest pi center dot center dot center dot pi. and C-H center dot center dot center dot N hydrogen bonding interactions. Complex 2 features azpy bridged one-dimensional (ID) chains of centrosymmetric [Mn(NCS)(2)(CH3OH)(2)} units which form a 2D porous sheet via a CH3 center dot center dot center dot pi supramolecular interaction. A guest azpy molecule is incorporated within the pores by strong H-bonding interactions. Complex 3 affords a 0-D motif with two monomeric Mn(II) units in the asymmetric unit. There exist pi center dot center dot center dot pi, anion center dot center dot center dot pi, and strong hydrogen bonding interactions between the azpy, water, and the anions. Density functional theory (DFT) calculations, at the M06/6-31+G* level of theory, are used to characterize a great variety of interactions that explicitly show the importance of host-guest supramolecular interactions for the stabilization of coordination compounds and creation of the fascinating three-dimensional (3D) architecture of the title compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two new Fe-III complexes, [Fe2L2(mu-OMe)(2)(NCS)(2)] (1) and [Fe2L2(mu-N-3)(2)(N-3)(2)] (2), have been synthesized using a N,N,O-donor tridentate Schiff base ligand HL {2-[(2-dimethylaminoethylimino)methyl]phenol}, the condensation product of salicylaldehyde and N,N-dimethyl-1,2-diaminoethane. The complexes were characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Both crystal structures are centrosymmetric dimers containing two Fe-III atoms, which are bridged in compound 1 by two methoxy anions and in compound 2 by two mu-1,1-azides. The chelating tridentate Schiff base and a terminal thiocyanato (for 1) or azido (for 2) group complete the hexacoordination of the distorted octahedral environment of each iron center. The magnetic properties of compound 1 show the presence of antiferromagnetic exchange interactions mediated by double methoxy bridges (J = -29.45 cm(-1)). Compound 2 shows the presence of very weak ferromagnetic exchange interactions mediated by double mu-1,1-N-3 bridges (J = 1.08 cm(-1)).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis and crystal structures of three nonheme di-iron(III) complexes with a tridentate N,N,O Schiff-base ligand, 2-({[2-(dimethylamino) ethyl] imino} methyl) phenol (HL), are reported. Complexes [Fe2OL2(NCO)(2)] (1a) and [Fe2OL2(SAL)(2)]center dot H2O [SAL = o-(CHO)C6H4O-] (1b) are unsupported mu-oxido-bridged dimers, and [Fe-2(OH)L-2(HCOO)(2)-(Cl)] (2) is a mu-hydroxido-bridged dimer supported by a formato bridging ligand. All complexes have been characterized by X-ray crystallography and spectroscopic analysis. Complex 1b has been reported previously; however, it has been reinvestigated to confirm the presence of a crucial water molecule in the solid state. Structural analyses show that in 1a the iron atoms are pentacoordinate with a bent Fe-O-Fe angle [142.7(2)degrees], whereas in 2 the metal centers are hexacoordinate with a normal Fe-OH-Fe bridging angle [137.9(2)degrees]. The Fe-O-Fe angles in complexes 1a and 1b differ significantly to those usually shown by (mu-oxido) Fe-III complexes. A theoretical study has been performed in order to rationalize this deviation. Moreover, the influence of the water molecule observed in the solid-state structure of 1b on the Fe-O-Fe angle is also analyzed theoretically.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three new MnIII complexes, {[Mn-2(salen)(2)(OCn)](ClO4)}(n) (1), {[Mn-2(salen)(2)(OPh)](ClO4)}(n) (2) and {[Mn-2(salen)(2)(OBz)](ClO4)}(2) (3) (where salen = N,N'-bis(salicylidene)-1,2-diaminoethane dianion, OCn = cinnamate, OPh = phenylacetate and OBz = benzoate), have been synthesized and characterized structurally and magnetically. The crystal structures reveal that all three structures contain syn-anti carboxylatebridged dimeric [Mn-2(salen)(2)(OOCR)](+) cations (OOCR = bridging carboxylate) that are joined together by weak Mn center dot center dot center dot O(phenoxo) interactions to form infinite alternating chain structures in 1 and 2, but the relatively long Mn center dot center dot center dot O(phenoxo) distance [3.621(2)angstrom] in 3 restricts this structure to tetranuclear units. Magnetic studies showed that 1 and 2 exhibited magnetic long-range order at T-N = 4.0 and 4.6 K (T-N = Neel transition temperature), respectively, to give spin-canted antiferromagnetic structures. Antiferromagnetic coupling was also observed in 3 but no peaks were recorded in the field-cooled magnetization (FCM) or zero-field-cooled magnetization (ZFCM) data, indicating that 3 remained paramagnetic down to 2 K. This dominant antiferromagnetic coupling is attributed to the carboxylate bridges. The ferromagnetic coupling expected due to the Mn-O(phenoxo)center dot center dot center dot Mn bridge plays an auxiliary role in the magnetic chain, but is an essential component of the bulk magnetic properties of the material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phenoxo-bridged dinuclear Cu-II complex [Cu2L2-(NCNCN)(2)] (1) and the dicyanamide-bridged molecular rectangle [Cu4L4{mu(1,5)-(NCNCN)(2)}]center dot(ClO4)(2)(H2O)(2) (2) were synthesized using the tridentate reduced Schiff-base ligand HL {2-[(2-dimethylamino-ethylamino) methyl] phenol}. The complexes were characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Complex 2 was formed through the joining of the phenoxo-bridged dinuclear Cu2O2 cores of 1 via the mu(1,5)-bridging mode of dicyanamide. The structural properties of the Cu2O2 cores in two complexes are significantly different. The geometry of the copper ions is distorted trigonal bipyramid in 1 but is nearly square-pyramidal in 2. These differences have a marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = -185.2 and -500.9 cm(-1) for 1 and 2, respectively) differ considerably.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reduction path of the complex fac-[ReΙ(imH)(CO)3(bpy)]+ was studied in situ by UV-Vis-NIR-IR spectroelectrochemistry within an OTTLE cell. The complex undergoes 1e‒ reduction of the 2,2'-bipyridine (bpy) ligand and intramolecular electron transfer resulting in the conversion of the axial imidazole (imH) ligand to 3-imidazolate (3-im–). This step is followed by two bpy-based 1e– reductions producing ultimately the five-coordinate complex [Re(CO)3(bpy)]‒ and free 3-im‒. The identity of the reduction product fac-[Re(3-im–)(CO)3(bpy)] has been proven by partial chemical deprotonation of the parent complex followed by IR spectroelectrochemistry. This is the first time when an electrochemical conversion of metal-coordinated imidazole to terminal 3-imidazolate has been observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although there has been much interest in the chemistry of bimetallic transition metal complexes, compounds with naphthalene or anthracene as bridging ligands are still rare. In this article, we describe the synthesis of the homodinuclear iron complexes [Cp*Fe(μ-η4:η4-L)FeCp*] (1: L = C10H8, 2: L = C14H10; Cp* = η5-C5Me5). The complexes were characterized by 1H and 13C{1H} NMR, UV/Vis, and 57Fe Mössbauer spectroscopy, and their molecular structures were determined by X-ray crystallography. Both complexes are diamagnetic as a result of the strong magnetic coupling of the 17e FeI centers mediated by the polyarene bridge. An analysisof the redox behavior of 1 and 2 by cyclic voltammetry andUV/Vis spectroelectrochemistry shows that the complexes can be oxidized reversibly in two well-separated one-electron steps to the monocation [Cp*Fe(μ-L)FeCp*]+ and the dication [Cp*Fe(μ-L)FeCp*]2+. The reduction to the monoanion [Cp*Fe(μ-L)FeCp*]– was also observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new tri-functional ligand (Bu2NCOCH2SO2CH2CONBu2)-Bu-i-Bu-i (L) was prepared and characterized. The coordination chemistry of this ligand with uranyl nitrate was studied with IR, (HNMR)-H-1, ES-MS, TG and elemental analysis methods. The structure of the compound [UO2(NO3)(2)L] was determined by single crystal X-ray diffraction techniques. In the structure the uranium(VI) ion is surrounded by eight oxygen atoms in a hexagonal bi-pyramidal geometry. Four oxygen atoms from two nitrate groups and two oxygen atoms from the ligand form a planar hexagon. The ligand acts as a bidentate chelate and bonds through both the carbamoyl groups to the uranyl nitrate. An ES-MS spectrum shows that the complex retains the bonding in solution. The compound displayed vibronically coupled fluorescence emission.