94 resultados para vector ecology
Resumo:
Deep Brain Stimulation has been used in the study of and for treating Parkinson’s Disease (PD) tremor symptoms since the 1980s. In the research reported here we have carried out a comparative analysis to classify tremor onset based on intraoperative microelectrode recordings of a PD patient’s brain Local Field Potential (LFP) signals. In particular, we compared the performance of a Support Vector Machine (SVM) with two well known artificial neural network classifiers, namely a Multiple Layer Perceptron (MLP) and a Radial Basis Function Network (RBN). The results show that in this study, using specifically PD data, the SVM provided an overall better classification rate achieving an accuracy of 81% recognition.
Resumo:
In this paper a support vector machine (SVM) approach for characterizing the feasible parameter set (FPS) in non-linear set-membership estimation problems is presented. It iteratively solves a regression problem from which an approximation of the boundary of the FPS can be determined. To guarantee convergence to the boundary the procedure includes a no-derivative line search and for an appropriate coverage of points on the FPS boundary it is suggested to start with a sequential box pavement procedure. The SVM approach is illustrated on a simple sine and exponential model with two parameters and an agro-forestry simulation model.
Resumo:
The different associations of Borrelia burgdorferi sensu lato spirochaetes with their natural reservoir hosts and tick vectors are slowly being unravelled. This review discusses the interactions of different genospecies of Lyme borreliosis spirochaetes and their differing tick vectors, vertebrate reservoirs and 'accidental hosts'. Particular reference is made to spirochaete-host interactions and occurrence of pathological consequences. Attention is focused on the unique prevalence of enzoonotic cycles in operation within the UK. Risk factors for acquiring Lyme borreliosis in man are discussed. (C) 2001 Lippincott Williams & Wilkins.
Resumo:
The emerging discipline of urban ecology is shifting focus from ecological processes embedded within cities to integrative studies of large urban areas as biophysical-social complexes. Yet this discipline lacks a theory. Results from the Baltimore Ecosystem Study, part of the Long Term Ecological Research Network, expose new assumptions and test existing assumptions about urban ecosystems. The findings suggest a broader range of structural and functional relationships than is often assumed for urban ecological systems. We address the relationships between social status and awareness of environmental problems, and between race and environmental hazard. We present patterns of species diversity, riparian function, and stream nitrate loading. In addition, we probe the suitability of land-use models, the diversity of soils, and the potential for urban carbon sequestration. Finally, we illustrate lags between social patterns and vegetation, the biogeochemistry of lawns, ecosystem nutrient retention, and social-biophysical feedbacks. These results suggest a framework for a theory of urban ecosystems.
Resumo:
Vintage-based vector autoregressive models of a single macroeconomic variable are shown to be a useful vehicle for obtaining forecasts of different maturities of future and past observations, including estimates of post-revision values. The forecasting performance of models which include information on annual revisions is superior to that of models which only include the first two data releases. However, the empirical results indicate that a model which reflects the seasonal nature of data releases more closely does not offer much improvement over an unrestricted vintage-based model which includes three rounds of annual revisions.