227 resultados para telelettura consumi idrici Smart Automatic Meter Reading acquedotto Fano (PU) ASET
Resumo:
The ability to create accurate geometric models of neuronal morphology is important for understanding the role of shape in information processing. Despite a significant amount of research on automating neuron reconstructions from image stacks obtained via microscopy, in practice most data are still collected manually. This paper describes Neuromantic, an open source system for three dimensional digital tracing of neurites. Neuromantic reconstructions are comparable in quality to those of existing commercial and freeware systems while balancing speed and accuracy of manual reconstruction. The combination of semi-automatic tracing, intuitive editing, and ability of visualizing large image stacks on standard computing platforms provides a versatile tool that can help address the reconstructions availability bottleneck. Practical considerations for reducing the computational time and space requirements of the extended algorithm are also discussed.
Resumo:
Many modern statistical applications involve inference for complex stochastic models, where it is easy to simulate from the models, but impossible to calculate likelihoods. Approximate Bayesian computation (ABC) is a method of inference for such models. It replaces calculation of the likelihood by a step which involves simulating artificial data for different parameter values, and comparing summary statistics of the simulated data with summary statistics of the observed data. Here we show how to construct appropriate summary statistics for ABC in a semi-automatic manner. We aim for summary statistics which will enable inference about certain parameters of interest to be as accurate as possible. Theoretical results show that optimal summary statistics are the posterior means of the parameters. Although these cannot be calculated analytically, we use an extra stage of simulation to estimate how the posterior means vary as a function of the data; and we then use these estimates of our summary statistics within ABC. Empirical results show that our approach is a robust method for choosing summary statistics that can result in substantially more accurate ABC analyses than the ad hoc choices of summary statistics that have been proposed in the literature. We also demonstrate advantages over two alternative methods of simulation-based inference.
Resumo:
We present an efficient graph-based algorithm for quantifying the similarity of household-level energy use profiles, using a notion of similarity that allows for small time–shifts when comparing profiles. Experimental results on a real smart meter data set demonstrate that in cases of practical interest our technique is far faster than the existing method for computing the same similarity measure. Having a fast algorithm for measuring profile similarity improves the efficiency of tasks such as clustering of customers and cross-validation of forecasting methods using historical data. Furthermore, we apply a generalisation of our algorithm to produce substantially better household-level energy use forecasts from historical smart meter data.
Resumo:
Collectively small and medium sized enterprises (SMEs) are significant energy users although many are unregulated by existing policies due to their low carbon emissions. Carbon reduction is often not a priority but smart grids may create a new opportunity. A smart grid will give electricity suppliers a picture of real-time energy flows and the opportunity for consumers to receive financial incentives for engaging in demand side management. As well as creating incentives for local carbon reduction, engaging SMEs with smart grids has potential for contributing to wider grid decarbonisation. Modelling of buildings, business activities and technology solutions is needed to identify opportunities for carbon reduction. The diversity of the SME sector complicates strategy development. SMEs are active in almost every business area and occupy the full range of property types. This paper reviews previous modelling work, exposing valuable data on floor space and energy consumption associated with different business activities. Limitations are seen with the age of this data and an inability to distinguish SME energy use. By modelling SME energy use, electrical loads are identified which could be shifted on demand, in a smart network. Initial analysis of consumption, not constrained by existing policies, identifies heating and cooling in retail and commercial offices as having potential for demand response. Hot water in hotel and catering and retail sectors may also be significant because of the energy storage potential. Areas to consider for energy efficiency schemes are also indicated.
Resumo:
Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.
Resumo:
In the ten years since the first edition of this book appeared there have been significant developments in food process engineering, notably in biotechnology and membrane application. Advances have been made in the use of sensors for process control, and the growth of information technology and on-line computer applications continues apace. In addition, plant investment decisions are increasingly determined by quality assurance considerations and have to incorporate a greater emphasis on health and safety issues. The content of this edition has been rearranged to include descriptions of recent developments and to reflect the influence of new technology on the control and operations of automated plant. Original examples have been retained where relevant and these, together with many new illustrations, provide a comprehensive guide to good practice.
Resumo:
Causal attribution has been one of the most influential frameworks in the literature of achievement motivation, but previous studies considered achievement attribution as relatively deliberate and effortful processes. In the current study, we tested the hypothesis that people automatically attribute their achievement failure to their ability, but reduce the ability attribution in a controlled manner. To address this hypothesis, we measured participants’ causal attribution belief for their task failure either under the cognitive load (load condition) or with full attention (no-load condition). Across two studies, participants attributed task performance to their ability more in the load than in the no-load condition. The increased ability attribution under cognitive load further affected intrinsic motivation. These results indicate that cognitive resources available after feedback play crucial roles in determining causal attribution belief, as well as achievement motivations. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract)
Resumo:
The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of diff erent social, economic and technical actors, which may be defi ned at various levels of abstraction. It is applied to understanding their interactions and can be adapted to include learning processes and emergent patterns. CASCADE models ‘prosumer’ agents (i.e., producers and/or consumers of energy) and ‘aggregator’ agents (e.g., traders of energy in both wholesale and retail markets) at various scales, from large generators and Energy Service Companies down to individual people and devices. The CASCADE Framework is formed of three main subdivisions that link models of electricity supply and demand, the electricity market and power fl ow. It can also model the variability of renewable energy generation caused by the weather, which is an important issue for grid balancing and the profi tability of energy suppliers. The development of CASCADE has already yielded some interesting early fi ndings, demonstrating that it is possible for a mediating agent (aggregator) to achieve stable demandfl attening across groups of domestic households fi tted with smart energy control and communication devices, where direct wholesale price signals had previously been found to produce characteristic complex system instability. In another example, it has demonstrated how large changes in supply mix can be caused even by small changes in demand profi le. Ongoing and planned refi nements to the Framework will support investigation of demand response at various scales, the integration of the power sector with transport and heat sectors, novel technology adoption and diffusion work, evolution of new smart grid business models, and complex power grid engineering and market interactions.
Resumo:
Smart healthcare is a complex domain for systems integration due to human and technical factors and heterogeneous data sources involved. As a part of smart city, it is such a complex area where clinical functions require smartness of multi-systems collaborations for effective communications among departments, and radiology is one of the areas highly relies on intelligent information integration and communication. Therefore, it faces many challenges regarding integration and its interoperability such as information collision, heterogeneous data sources, policy obstacles, and procedure mismanagement. The purpose of this study is to conduct an analysis of data, semantic, and pragmatic interoperability of systems integration in radiology department, and to develop a pragmatic interoperability framework for guiding the integration. We select an on-going project at a local hospital for undertaking our case study. The project is to achieve data sharing and interoperability among Radiology Information Systems (RIS), Electronic Patient Record (EPR), and Picture Archiving and Communication Systems (PACS). Qualitative data collection and analysis methods are used. The data sources consisted of documentation including publications and internal working papers, one year of non-participant observations and 37 interviews with radiologists, clinicians, directors of IT services, referring clinicians, radiographers, receptionists and secretary. We identified four primary phases of data analysis process for the case study: requirements and barriers identification, integration approach, interoperability measurements, and knowledge foundations. Each phase is discussed and supported by qualitative data. Through the analysis we also develop a pragmatic interoperability framework that summaries the empirical findings and proposes recommendations for guiding the integration in the radiology context.
Resumo:
The Distribution Network Operators (DNOs) role is becoming more difficult as electric vehicles and electric heating penetrate the network, increasing the demand. As a result it becomes harder for the distribution networks infrastructure to remain within its operating constraints. Energy storage is a potential alternative to conventional network reinforcement such as upgrading cables and transformers. The research presented here in this paper shows that due to the volatile nature of the LV network, the control approach used for energy storage has a significant impact on performance. This paper presents and compares control methodologies for energy storage where the objective is to get the greatest possible peak demand reduction across the day from a pre-specified storage device. The results presented show the benefits and detriments of specific types of control on a storage device connected to a single phase of an LV network, using aggregated demand profiles based on real smart meter data from individual homes. The research demonstrates an important relationship between how predictable an aggregation is and the best control methodology required to achieve the objective.
Resumo:
Integrating renewable energy into built environments requires additional attention to the balancing of supply and demand due to their intermittent nature. Demand Side Response (DSR) has the potential to make money for organisations as well as support the System Operator as the generation mix changes. There is an opportunity to increase the use of existing technologies in order to manage demand. Company-owned standby generators are a rarely used resource; their maintenance schedule often accounts for a majority of their running hours. DSR encompasses a range of technologies and organisations; Sustainability First (2012) suggest that the System Operator (SO), energy supply companies, Distribution Network Operators (DNOs), Aggregators and Customers all stand to benefit from DSR. It is therefore important to consider impact of DSR measures to each of these stakeholders. This paper assesses the financial implications of organisations using existing standby generation equipment for DSR in order to avoid peak electricity charges. It concludes that under the current GB electricity pricing structure, there are several regions where running diesel generators at peak times is financially beneficial to organisations. Issues such as fuel costs, Carbon Reduction Commitment (CRC) charges, maintenance costs and electricity prices are discussed.
Resumo:
This paper discusses ECG classification after parametrizing the ECG waveforms in the wavelet domain. The aim of the work is to develop an accurate classification algorithm that can be used to diagnose cardiac beat abnormalities detected using a mobile platform such as smart-phones. Continuous time recurrent neural network classifiers are considered for this task. Records from the European ST-T Database are decomposed in the wavelet domain using discrete wavelet transform (DWT) filter banks and the resulting DWT coefficients are filtered and used as inputs for training the neural network classifier. Advantages of the proposed methodology are the reduced memory requirement for the signals which is of relevance to mobile applications as well as an improvement in the ability of the neural network in its generalization ability due to the more parsimonious representation of the signal to its inputs.
Resumo:
As the European Union (EU) approaches its 60th anniversary, it is worth assessing progress towards a key objective – the abolition of barriers to the marketing of food in the EU. Food has always created particular problems for the EU as national differences in diets, culture and geography make standardisation impossible. Early attempts focussed on direct measures to harmonise requirements or, later, to create an ‘internal market’. Subsequently a changed emphasis brought about the need to focus more clearly on the harmonisation of food safety. More widely, the recent recognition that too much legislation can itself create barriers has led legislators to attempt to consider more carefully the impact of their efforts. This paper reflects on the various stages in the creation of harmonised food controls and considers how case law has impacted the process. Today there are still differences and complete barrier-free trade seems some way off.