64 resultados para systematic pharmacology
Resumo:
Demand for organic meat is partially driven by consumer perceptions that organic foods are more nutritious than non-organic foods. However, there have been no systematic reviews comparing specifically the nutrient content of organic and conventionally produced meat. In this study, we report results of a meta-analysis based on sixty-seven published studies comparing the composition of organic and non-organic meat products. For many nutritionally relevant compounds (e.g. minerals, antioxidants and most individual fatty acids (FA)), the evidence base was too weak for meaningful meta-analyses. However, significant differences in FA profiles were detected when data from all livestock species were pooled. Concentrations of SFA and MUFA were similar or slightly lower, respectively, in organic compared with conventional meat. Larger differences were detected for total PUFA and n-3 PUFA, which were an estimated 23 (95 % CI 11, 35) % and 47 (95 % CI 10, 84) % higher in organic meat, respectively. However, for these and many other composition parameters, for which meta-analyses found significant differences, heterogeneity was high, and this could be explained by differences between animal species/meat types. Evidence from controlled experimental studies indicates that the high grazing/forage-based diets prescribed under organic farming standards may be the main reason for differences in FA profiles. Further studies are required to enable meta-analyses for a wider range of parameters (e.g. antioxidant, vitamin and mineral concentrations) and to improve both precision and consistency of results for FA profiles for all species. Potential impacts of composition differences on human health are discussed.
Resumo:
Systematic review (SR) is a rigorous, protocol-driven approach designed to minimise error and bias when summarising the body of research evidence relevant to a specific scientific question. Taking as a comparator the use of SR in synthesising research in healthcare, we argue that SR methods could also pave the way for a “step change” in the transparency, objectivity and communication of chemical risk assessments (CRA) in Europe and elsewhere. We suggest that current controversies around the safety of certain chemicals are partly due to limitations in current CRA procedures which have contributed to ambiguity about the health risks posed by these substances. We present an overview of how SR methods can be applied to the assessment of risks from chemicals, and indicate how challenges in adapting SR methods from healthcare research to the CRA context might be overcome. Regarding the latter, we report the outcomes from a workshop exploring how to increase uptake of SR methods, attended by experts representing a wide range of fields related to chemical toxicology, risk analysis and SR. Priorities which were identified include: the conduct of CRA-focused prototype SRs; the development of a recognised standard of reporting and conduct for SRs in toxicology and CRA; and establishing a network to facilitate research, communication and training in SR methods. We see this paper as a milestone in the creation of a research climate that fosters communication between experts in CRA and SR and facilitates wider uptake of SR methods into CRA.
Resumo:
In numerical weather prediction, parameterisations are used to simulate missing physics in the model. These can be due to a lack of scientific understanding or a lack of computing power available to address all the known physical processes. Parameterisations are sources of large uncertainty in a model as parameter values used in these parameterisations cannot be measured directly and hence are often not well known; and the parameterisations themselves are also approximations of the processes present in the true atmosphere. Whilst there are many efficient and effective methods for combined state/parameter estimation in data assimilation (DA), such as state augmentation, these are not effective at estimating the structure of parameterisations. A new method of parameterisation estimation is proposed that uses sequential DA methods to estimate errors in the numerical models at each space-time point for each model equation. These errors are then fitted to pre-determined functional forms of missing physics or parameterisations that are based upon prior information. We applied the method to a one-dimensional advection model with additive model error, and it is shown that the method can accurately estimate parameterisations, with consistent error estimates. Furthermore, it is shown how the method depends on the quality of the DA results. The results indicate that this new method is a powerful tool in systematic model improvement.
Resumo:
The derivation of time evolution equations for slow collective variables starting from a micro- scopic model system is demonstrated for the tutorial example of the classical, two-dimensional XY model. Projection operator techniques are used within a nonequilibrium thermodynamics framework together with molecular simulations in order to establish the building blocks of the hydrodynamics equations: Poisson brackets that determine the deterministic drift, the driving forces from the macroscopic free energy and the friction matrix. The approach is rather general and can be applied for deriving the equations of slow variables for a broad variety of systems.