89 resultados para surface organometallic chemistry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption and subsequent thermal chemistry of the acetyl-protected manganese porphyrin, [SA(C)](4)P-Mn(III)Cl on Ag(100) have been studied by high resolution XPS and temperature-programmed desorption. The deprotection event, leading to formation of the covalently bound thioporphyrin, has been characterized and the conditions necessary for removal of the axial chlorine ligand have been determined, thus establishing a methodology for creating tethered activated species that could serve as catalytic sites for delicate oxidation reactions. Surface-mediated acetyl deprotection occurs at 298 K, at which temperature porphyrin diffusion is limited. At temperatures above similar to 425 K porphyrin desorption, diffusion and deprotection occur and at >470 K the axial chlorine is removed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymmetric hydrogenation of C=C bonds is of the highest importance in organic synthesis, and such reactions are currently carried out with organometallic homogeneous catalysts. Achieving heterogeneous metal-catalyzed hydrogenation, a highly desirable goal, necessitates forcing the crucial enantiodifferentiating step to take place at the metal surface. By synthesis and application of six chiral sulfide ligands that anchor robustly to Pd nanoparticles and resist displacement, we have for the first time accomplished heterogeneous enantioselective catalytic hydrogenation of isophorone. High resolution XPS data established that ligand adsorption from solution occurred exclusively on the Pd nanoparticles and not on the carbon support. All ligands contained a pyrrolidine nitrogen to enable their interaction with the isophorone substrate while the sulfide functionality provided the required interaction with the Pd surface. Enantioselective turnover numbers of up to similar to 100 product molecules per ligand molecule were found with a very large variation in asymmetric induction between ligands: observed enantiomeric excesses increased with increasing size of the alkyl group in the sulfide. This likely reflects varying degrees of ligand dispersion on the surface: bulky substituent groups hinder close approach of ligand molecules to each other, inhibiting close-packed island formation, favoring dispersion as separate molecules, and leading to effective asymmetric induction. Conversely, small substituents favor island formation leading to very low asymmetric induction. Enantioselective reaction most likely involves initial formation of an enamine or iminium species, confirmed by use of an analogous tertiary amine, which leads to racemic product. Ligand rigidity and resistance to self-assembled monolayer formation are important attributes that should be designed into improved chiral modifiers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a new method for the synthesis of Pd nanoparticles with controllable sizes within a silica matrix using solid-supported surfactants in supercritical CO2. XRD, HRTEM and CO chemisorption data show that unformly sized Pd nanoparticles are evenly distributed within the porous silica and are chemically tethered by surfactant molecules [poly(oxyethylene stearyl ether) and fluorinated poly(oxyethylene)]. It is postulated that tiny solid-supported surfactant assemblies act as nano-reactors for the template synthesis of nanoparticles or clusters from the soluble precursors therein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Weathering of mine tailings in Adak results in high As concentrations in surface and ground water, sediments, and soil. In spite of the oxic conditions, As-rich surface and ground, water samples indicate As(III) species predominantly (up to 83%). Several microorganisms were isolated from the enrichment cultures that were involved in As cycling. Amongst them was Arsenicicoccus bolidensis - a novel gram-positive, facultatively anaerobic, coccus-shaped actinomycete, which actively reduced As(V) to As(III) in aqueous media. A. bolidensis reduced 0.06-0.20 mM day(-1) As(V). As(V) reduction displays a direct correlation between the initial As(V) concentration, growth rate, and biomass yield. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alignment of model amyloid peptide YYKLVFFC is investigated in bulk and at a solid surface using a range of spectroscopic methods employing polarized radiation. The peptide is based on a core sequence of the amyloid beta (A beta) peptide, KLVFF. The attached tyrosine and cysteine units are exploited to yield information on alignment and possible formation of disulfide or dityrosine links. Polarized Raman spectroscopy on aligned stalks provides information on tyrosine orientation, which complements data from linear dichroism (LD) on aqueous solutions subjected to shear in a Couette cell. LD provides a detailed picture of alignment of peptide strands and aromatic residues and was also used to probe the kinetics of self-assembly. This suggests initial association of phenylalanine residues, followed by subsequent registry of strands and orientation of tyrosine residues. X-ray diffraction (XRD) data from aligned stalks is used to extract orientational order parameters from the 0.48 nm reflection in the cross-beta pattern, from which an orientational distribution function is obtained. X-ray diffraction on solutions subject to capillary flow confirmed orientation in situ at the level of the cross-beta pattern. The information on fibril and tyrosine orientation from polarized Raman spectroscopy is compared with results from NEXAFS experiments on samples prepared as films on silicon. This indicates fibrils are aligned parallel to the surface, with phenyl ring normals perpendicular to the surface. Possible disulfide bridging leading to peptide dimer formation was excluded by Raman spectroscopy, whereas dityrosine formation was probed by fluorescence experiments and was found not to occur except under alkaline conditions. Congo red binding was found not to influence the cross-beta XRD pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied enantiospecific differences in the adsorption of (S)- and (R)-alanine on Cu{531}R using low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. At saturation coverage, alanine adsorbs as alaninate forming a p(1 4) superstructure. LEED shows a significantly higher degree of long-range order for the S than for the R enantiomer. Also carbon K-edge NEXAFS spectra show differences between (S)- and (R)-alanine in the variations of the ð resonance when the linear polarization vector is rotated within the surface plane. This indicates differences in the local adsorption geometries of the molecules, most likely caused by the interaction between the methyl group and the metal surface and/or intermolecular hydrogen bonds. Comparison with model calculations and additional information from LEED and photoelectron spectroscopy suggest that both enantiomers of alaninate adsorb in two different orientations associated with triangular adsorption sites on {110} and {311} microfacets of the Cu{531} surface. The experimental data are ambiguous as to the exact difference between the local geometries of the two enantiomers. In one of two models that fit the data equally well, significantly more (R)-alaninate molecules are adsorbed on {110} sites than on {311} sites whereas for (S)-alaninate the numbers are equal. The enantiospecific differences found in these experiments are much more pronounced than those reported from other ultrahigh vacuum techniques applied to similar systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of the chiral kinked Pt{531} surface has been determined by low-energy electron diffraction intensity-versus-energy (LEED-IV) analysis and density functional theory (DFT). Large contractions and expansions of the vertical interlayer distances with respect to the bulk-terminated surface geometry were found for the first six layers (LEED: d(12) = 0.44 angstrom, d(23) = 0.69 angstrom, d(34) = 0.49 angstrom, d(45) = 0.95 angstrom, d(56) = 0.56 angstrom; DFT: d(12) = 0.51 angstrom, d(23) = 0.55 angstrom, d(34) = 0.74 angstrom, d(45) = 0.78 angstrom, d(56) = 0.63 angstrom; d(bulk) = 0.66 angstrom). Energy-dependent cancellations of LEED spots over unusually large energy ranges, up to 100 eV, can be explained by surface roughness and reproduced by applying a model involving 0.25 ML of vacancies and adatoms in the scattering calculations. The agreement between the results from LEED and DFT is not as good as in other cases, which could be due to this roughness of the real surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of oxygen on the chiral Pt{531} surface was studied by high-resolution X-ray photoelectron spectroscopy (HRXPS) and low energy electron diffraction (LEED). After the surface is annealed in oxygen (3 x 10(-7) mbar), three O 1s peaks are observed in XPS. One peak, at 529.5 eV, is assigned to chemisorbed oxygen; it disappears after annealing in vacuo to temperatures above 900 K. The other two peaks at 530.8 and 532.3 eV are stable up to at least 1250 K. They are associated with oxide clusters on the surface. These clusters readily react with coadsorbed carbon monoxide at temperatures between 315 and 620 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have determined the structure of a complex rhodium carbonyl chloride [Rh(CO)(2)Cl] molecule adsorbed on the TiO2 (110) surface by the normal incidence x-ray standing wave technique. The data show that the technique is applicable to reducible oxide systems and that the dominant adsorbed species is undissociated with Rh binding atop bridging oxygen and to the Cl found close to the fivefold coordinated Ti ions in the surface. A minority geminal dicarboryl species, where Rh-Cl bond scission has occurred, is found bridging the bridging oxygen ions forming a high-symmetry site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ligands such as CO, O2, or NO are involved in the biological function of myoglobin. Here we investigate the energetics and dynamics of NO interacting with the Fe(II) heme group in native myoglobin using ab initio and molecular dynamics simulations. At the global minimum of the ab initio potential energy surface (PES), the binding energy of 23.4 kcal/mol and the Fe-NO structure compare well with the experimental results. Interestingly, the PES is found to exhibit two minima: There exists a metastable, linear Fe-O-N minimum in addition to the known, bent Fe-N-O global minimum conformation. Moreover, the T-shaped configuration is found to be a saddle point, in contrast to the corresponding minimum for NO interacting with Fe(III). To use the ab initio results for finite temperature molecular dynamics simulations, an analytical function was fitted to represent the Fe-NO interaction. The simulations show that the secondary minimum is dynamically stable up to 250 K and has a lifetime of several hundred picoseconds at 300 K. The difference in the topology of the heme-NO PES from that assumed previously (one deep, single Fe-NO minimum) suggests that it is important to use the full PES for a quantitative understanding of this system. Why the metastable state has not been observed in the many spectroscopic studies of myoglobin interacting with NO is discussed, and possible approaches to finding it are outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The budgets of seven halogenated gases (CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CCl4 and SF6) are studied by comparing measurements in polar firn air from two Arctic and three Antarctic sites, and simulation results of two numerical models: a 2-D atmospheric chemistry model and a 1-D firn diffusion model. The first one is used to calculate atmospheric concentrations from emission trends based on industrial inventories; the calculated concentration trends are used by the second one to produce depth concentration profiles in the firn. The 2-D atmospheric model is validated in the boundary layer by comparison with atmospheric station measurements, and vertically for CFC-12 by comparison with balloon and FTIR measurements. Firn air measurements provide constraints on historical atmospheric concentrations over the last century. Age distributions in the firn are discussed using a Green function approach. Finally, our results are used as input to a radiative model in order to evaluate the radiative forcing of our target gases. Multi-species and multi-site firn air studies allow to better constrain atmospheric trends. The low concentrations of all studied gases at the bottom of the firn, and their consistency with our model results confirm that their natural sources are small. Our results indicate that the emissions, sinks and trends of CFC-11, CFC-12, CFC-113, CFC-115 and SF6 are well constrained, whereas it is not the case for CFC-114 and CCl4. Significant emission-dependent changes in the lifetimes of halocarbons destroyed in the stratosphere were obtained. Those result from the time needed for their transport from the surface where they are emitted to the stratosphere where they are destroyed. Efforts should be made to update and reduce the large uncertainties on CFC lifetimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SCIENTIFIC SUMMARY Globally averaged total column ozone has declined over recent decades due to the release of ozone-depleting substances (ODSs) into the atmosphere. Now, as a result of the Montreal Protocol, ozone is expected to recover from the effects of ODSs as ODS abundances decline in the coming decades. However, a number of factors in addition to ODSs have led to and will continue to lead to changes in ozone. Discriminating between the causes of past and projected ozone changes is necessary, not only to identify the progress in ozone recovery from ODSs, but also to evaluate the effectiveness of climate and ozone protection policy options. Factors Affecting Future Ozone and Surface Ultraviolet Radiation • At least for the next few decades, the decline of ODSs is expected to be the major factor affecting the anticipated increase in global total column ozone. However, several factors other than ODS will affect the future evolution of ozone in the stratosphere. These include changes in (i) stratospheric circulation and temperature due to changes in long-lived greenhouse gas (GHG) abundances, (ii) stratospheric aerosol loading, and (iii) source gases of highly reactive stratospheric hydrogen and nitrogen compounds. Factors that amplify the effects of ODSs on ozone (e.g., stratospheric aerosols) will likely decline in importance as ODSs are gradually eliminated from the atmosphere. • Increases in GHG emissions can both positively and negatively affect ozone. Carbon dioxide (CO2)-induced stratospheric cooling elevates middle and upper stratospheric ozone and decreases the time taken for ozone to return to 1980 levels, while projected GHG-induced increases in tropical upwelling decrease ozone in the tropical lower stratosphere and increase ozone in the extratropics. Increases in nitrous oxide (N2O) and methane (CH4) concentrations also directly impact ozone chemistry but the effects are different in different regions. • The Brewer-Dobson circulation (BDC) is projected to strengthen over the 21st century and thereby affect ozone amounts. Climate models consistently predict an acceleration of the BDC or, more specifically, of the upwelling mass flux in the tropical lower stratosphere of around 2% per decade as a consequence of GHG abundance increases. A stronger BDC would decrease the abundance of tropical lower stratospheric ozone, increase poleward transport of ozone, and could reduce the atmospheric lifetimes of long-lived ODSs and other trace gases. While simulations showing faster ascent in the tropical lower stratosphere to date are a robust feature of chemistry-climate models (CCMs), this has not been confirmed by observations and the responsible mechanisms remain unclear. • Substantial ozone losses could occur if stratospheric aerosol loading were to increase in the next few decades, while halogen levels are high. Stratospheric aerosol increases may be caused by sulfur contained in volcanic plumes entering the stratosphere or from human activities. The latter might include attempts to geoengineer the climate system by enhancing the stratospheric aerosol layer. The ozone losses mostly result from enhanced heterogeneous chemistry on stratospheric aerosols. Enhanced aerosol heating within the stratosphere also leads to changes in temperature and circulation that affect ozone. • Surface ultraviolet (UV) levels will not be affected solely by ozone changes but also by the effects of climate change and by air quality change in the troposphere. These tropospheric effects include changes in clouds, tropospheric aerosols, surface reflectivity, and tropospheric sulfur dioxide (SO2) and nitrogen dioxide (NO2). The uncertainties in projections of these factors are large. Projected increases in tropospheric ozone are more certain and may lead to reductions in surface erythemal (“sunburning”) irradiance of up to 10% by 2100. Changes in clouds may lead to decreases or increases in surface erythemal irradiance of up to 15% depending on latitude. Expected Future Changes in Ozone Full ozone recovery from the effects of ODSs and return of ozone to historical levels are not synonymous. In this chapter a key target date is chosen to be 1980, in part to retain the connection to previous Ozone Assessments. Noting, however, that decreases in ozone may have occurred in some regions of the atmosphere prior to 1980, 1960 return dates are also reported. The projections reported on in this chapter are taken from a recent compilation of CCM simulations. The ozone projections, which also form the basis for the UV projections, are limited in their representativeness of possible futures since they mostly come from CCM simulations based on a single GHG emissions scenario (scenario A1B of Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2000) and a single ODS emissions scenario (adjusted A1 of the previous (2006) Ozone Assessment). Throughout this century, the vertical, latitudinal, and seasonal structure of the ozone distribution will be different from what it was in 1980. For this reason, ozone changes in different regions of the atmosphere are considered separately. • The projections of changes in ozone and surface clear-sky UV are broadly consistent with those reported on in the 2006 Assessment. • The capability of making projections and attribution of future ozone changes has been improved since the 2006 Assessment. Use of CCM simulations from an increased number of models extending through the entire period of ozone depletion and recovery from ODSs (1960–2100) as well as sensitivity simulations have allowed more robust projections of long-term changes in the stratosphere and of the relative contributions of ODSs and GHGs to those changes. • Global annually averaged total column ozone is projected to return to 1980 levels before the middle of the century and earlier than when stratospheric halogen loading returns to 1980 levels. CCM projections suggest that this early return is primarily a result of GHG-induced cooling of the upper stratosphere because the effects of circulation changes on tropical and extratropical ozone largely cancel. Global (90°S–90°N) annually averaged total column ozone will likely return to 1980 levels between 2025 and 2040, well before the return of stratospheric halogens to 1980 levels between 2045 and 2060. • Simulated changes in tropical total column ozone from 1960 to 2100 are generally small. The evolution of tropical total column ozone in models depends on the balance between upper stratospheric increases and lower stratospheric decreases. The upper stratospheric increases result from declining ODSs and a slowing of ozone destruction resulting from GHG-induced cooling. Ozone decreases in the lower stratosphere mainly result from an increase in tropical upwelling. From 1960 until around 2000, a general decline is simulated, followed by a gradual increase to values typical of 1980 by midcentury. Thereafter, although total column ozone amounts decline slightly again toward the end of the century, by 2080 they are no longer expected to be affected by ODSs. Confidence in tropical ozone projections is compromised by the fact that simulated decreases in column ozone to date are not supported by observations, suggesting that significant uncertainties remain. • Midlatitude total column ozone is simulated to evolve differently in the two hemispheres. Over northern midlatitudes, annually averaged total column ozone is projected to return to 1980 values between 2015 and 2030, while for southern midlatitudes the return to 1980 values is projected to occur between 2030 and 2040. The more rapid return to 1980 values in northern midlatitudes is linked to a more pronounced strengthening of the poleward transport of ozone due to the effects of increased GHG levels, and effects of Antarctic ozone depletion on southern midlatitudes. By 2100, midlatitude total column ozone is projected to be above 1980 values in both hemispheres. • October-mean Antarctic total column ozone is projected to return to 1980 levels after midcentury, later than in any other region, and yet earlier than when stratospheric halogen loading is projected to return to 1980 levels. The slightly earlier return of ozone to 1980 levels (2045–2060) results primarily from upper stratospheric cooling and resultant increases in ozone. The return of polar halogen loading to 1980 levels (2050–2070) in CCMs is earlier than in empirical models that exclude the effects of GHG-induced changes in circulation. Our confidence in the drivers of changes in Antarctic ozone is higher than for other regions because (i) ODSs exert a strong influence on Antarctic ozone, (ii) the effects of changes in GHG abundances are comparatively small, and (iii) projections of ODS emissions are more certain than those for GHGs. Small Antarctic ozone holes (areas of ozone <220 Dobson units, DU) could persist to the end of the 21st century. • March-mean Arctic total column ozone is projected to return to 1980 levels two to three decades before polar halogen loading returns to 1980 levels, and to exceed 1980 levels thereafter. While CCM simulations project a return to 1980 levels between 2020 and 2035, most models tend not to capture observed low temperatures and thus underestimate present-day Arctic ozone loss such that it is possible that this return date is biased early. Since the strengthening of the Brewer-Dobson circulation through the 21st century leads to increases in springtime Arctic column ozone, by 2100 Arctic ozone is projected to lie well above 1960 levels. Uncertainties in Projections • Conclusions dependent on future GHG levels are less certain than those dependent on future ODS levels since ODS emissions are controlled by the Montreal Protocol. For the six GHG scenarios considered by a few CCMs, the simulated differences in stratospheric column ozone over the second half of the 21st century are largest in the northern midlatitudes and the Arctic, with maximum differences of 20–40 DU between the six scenarios in 2100. • There remain sources of uncertainty in the CCM simulations. These include the use of prescribed ODS mixing ratios instead of emission fluxes as lower boundary conditions, the range of sea surface temperatures and sea ice concentrations, missing tropospheric chemistry, model parameterizations, and model climate sensitivity. • Geoengineering schemes for mitigating climate change by continuous injections of sulfur-containing compounds into the stratosphere, if implemented, would substantially affect stratospheric ozone, particularly in polar regions. Ozone losses observed following large volcanic eruptions support this prediction. However, sporadic volcanic eruptions provide limited analogs to the effects of continuous sulfur emissions. Preliminary model simulations reveal large uncertainties in assessing the effects of continuous sulfur injections. Expected Future Changes in Surface UV. While a number of factors, in addition to ozone, affect surface UV irradiance, the focus in this chapter is on the effects of changes in stratospheric ozone on surface UV. For this reason, clear-sky surface UV irradiance is calculated from ozone projections from CCMs. • Projected increases in midlatitude ozone abundances during the 21st century, in the absence of changes in other factors, in particular clouds, tropospheric aerosols, and air pollutants, will result in decreases in surface UV irradiance. Clear-sky erythemal irradiance is projected to return to 1980 levels on average in 2025 for the northern midlatitudes, and in 2035 for the southern midlatitudes, and to fall well below 1980 values by the second half of the century. However, actual changes in surface UV will be affected by a number of factors other than ozone. • In the absence of changes in other factors, changes in tropical surface UV will be small because changes in tropical total column ozone are projected to be small. By the middle of the 21st century, the model projections suggest surface UV to be slightly higher than in the 1960s, very close to values in 1980, and slightly lower than in 2000. The projected decrease in tropical total column ozone through the latter half of the century will likely result in clear-sky surface UV remaining above 1960 levels. Average UV irradiance is already high in the tropics due to naturally occurring low total ozone columns and high solar elevations. • The magnitude of UV changes in the polar regions is larger than elsewhere because ozone changes in polar regions are larger. For the next decades, surface clear-sky UV irradiance, particularly in the Antarctic, will continue to be higher than in 1980. Future increases in ozone and decreases in clear-sky UV will occur at slower rates than those associated with the ozone decreases and UV increases that occurred before 2000. In Antarctica, surface clear-sky UV is projected to return to 1980 levels between 2040 and 2060, while in the Arctic this is projected to occur between 2020 and 2030. By 2100, October surface clear-sky erythemal irradiance in Antarctica is likely to be between 5% below to 25% above 1960 levels, with considerable uncertainty. This is consistent with multi-model-mean October Antarctic total column ozone not returning to 1960 levels by 2100. In contrast, by 2100, surface clear-sky UV in the Arctic is projected to be 0–10% below 1960 levels.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach is presented for the evaluation of circulation type classifications (CTCs) in terms of their capability to predict surface climate variations. The approach is analogous to that for probabilistic meteorological forecasts and is based on the Brier skill score. This score is shown to take a particularly simple form in the context of CTCs and to quantify the resolution of a climate variable by the classifications. The sampling uncertainty of the skill can be estimated by means of nonparametric bootstrap resampling. The evaluation approach is applied for a systematic intercomparison of 71 CTCs (objective and manual, from COST Action 733) with respect to their ability to resolve daily precipitation in the Alpine region. For essentially all CTCs, the Brier skill score is found to be higher for weak and moderate compared to intense precipitation, for winter compared to summer, and over the north and west of the Alps compared to the south and east. Moreover, CTCs with a higher number of types exhibit better skill than CTCs with few types. Among CTCs with comparable type number, the best automatic classifications are found to outperform the best manual classifications. It is not possible to single out one ‘best’ classification for Alpine precipitation, but there is a small group showing particularly high skill.