117 resultados para success models comparison
Resumo:
The intensity and distribution of daily precipitation is predicted to change under scenarios of increased greenhouse gases (GHGs). In this paper, we analyse the ability of HadCM2, a general circulation model (GCM), and a high-resolution regional climate model (RCM), both developed at the Met Office's Hadley Centre, to simulate extreme daily precipitation by reference to observations. A detailed analysis of daily precipitation is made at two UK grid boxes, where probabilities of reaching daily thresholds in the GCM and RCM are compared with observations. We find that the RCM generally overpredicts probabilities of extreme daily precipitation but that, when the GCM and RCM simulated values are scaled to have the same mean as the observations, the RCM captures the upper-tail distribution more realistically. To compare regional changes in daily precipitation in the GHG-forced period 2080-2100 in the GCM and the RCM, we develop two methods. The first considers the fractional changes in probability of local daily precipitation reaching or exceeding a fixed 15 mm threshold in the anomaly climate compared with the control. The second method uses the upper one-percentile of the control at each point as the threshold. Agreement between the models is better in both seasons with the latter method, which we suggest may be more useful when considering larger scale spatial changes. On average, the probability of precipitation exceeding the 1% threshold increases by a factor of 2.5 (GCM and RCM) in winter and by I .7 (GCM) or 1.3 (RCM) in summer.
Resumo:
Sea-level rise is an important aspect of climate change because of its impact on society and ecosystems. Here we present an intercomparison of results from ten coupled atmosphere-ocean general circulation models (AOGCMs) for sea-level changes simulated for the twentieth century and projected to occur during the twenty first century in experiments following scenario IS92a for greenhouse gases and sulphate aerosols. The model results suggest that the rate of sea-level rise due to thermal expansion of sea water has increased during the twentieth century, but the small set of tide gauges with long records might not be adequate to detect this acceleration. The rate of sea-level rise due to thermal expansion continues to increase throughout the twenty first century, and the projected total is consequently larger than in the twentieth century; for 1990-2090 it amounts to 0.20-0.37 in. This wide range results from systematic uncertainty in modelling of climate change and of heat uptake by the ocean. The AOGCMs agree that sea-level rise is expected to be geographically non-uniform, with some regions experiencing as much as twice the global average, and others practically zero, but they do not agree about the geographical pattern. The lack of agreement indicates that we cannot currently have confidence in projections of local sea- level changes, and reveals a need for detailed analysis and intercomparison in order to understand and reduce the disagreements.
Resumo:
We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and development conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangu (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs typically simulate water resources impacts based on a more explicit representation of catchment water resources than that available from the GHM, and the CHMs include river routing. Simulations of average annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global mean temperature from the HadCM3 climate model and (2)a prescribed increase in global-mean temperature of 2oC for seven GCMs to explore response to climate model and structural uncertainty. We find that differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low flow. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are presented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs.This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find, however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evaporation estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme monthly runoff, all of which have implications for future water management issues.
Resumo:
This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared with those of standard nonparametric extreme value tail estimation approaches, with a small sample bias-corrected extreme value approach, and with those calculated from bootstrapping the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that, for a holdout sample, the proposed semi-nonparametric extreme value approach yields superior results to other methods, but the small sample tail index technique is also accurate.
Resumo:
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.
Resumo:
The statistics of cloud-base vertical velocity simulated by the non-hydrostatic mesoscale model AROME are compared with Cloudnet remote sensing observations at two locations: the ARM SGP site in Central Oklahoma, and the DWD observatory at Lindenberg, Germany. The results show that, as expected, AROME significantly underestimates the variability of vertical velocity at cloud-base compared to observations at their nominal resolution; the standard deviation of vertical velocity in the model is typically 4-6 times smaller than observed, and even more during the winter at Lindenberg. Averaging the observations to the horizontal scale corresponding to the physical grid spacing of AROME (2.5 km) explains 70-80% of the underestimation by the model. Further averaging of the observations in the horizontal is required to match the model values for the standard deviation in vertical velocity. This indicates an effective horizontal resolution for the AROME model of at least 4 times the physically-defined grid spacing. The results illustrate the need for special treatment of sub-grid scale variability of vertical velocities in kilometer-scale atmospheric models, if processes such as aerosol-cloud interactions are to be included in the future.
Resumo:
The applicability of BET model for calculation of surface area of activated carbons is checked by using molecular simulations. By calculation of geometric surface areas for the simple model carbon slit-like pore with the increasing width, and by comparison of the obtained values with those for the same systems from the VEGA ZZ package (adsorbate-accessible molecular surface), it is shown that the latter methods provide correct values. For the system where a monolayer inside a pore is created the ASA approach (GCMC, Ar, T = 87 K) underestimates the value of surface area for micropores (especially, where only one layer is observed and/or two layers of adsorbed Ar are formed). Therefore, we propose the modification of this method based on searching the relationship between the pore diameter and the number of layers in a pore. Finally BET; original andmodified ASA; and A, B and C-point surface areas are calculated for a series of virtual porous carbons using simulated Ar adsorption isotherms (GCMC and T = 87 K). The comparison of results shows that the BET method underestimates and not, as it was usually postulated, overestimates the surface areas of microporous carbons.
Resumo:
The performance of flood inundation models is often assessed using satellite observed data; however these data have inherent uncertainty. In this study we assess the impact of this uncertainty when calibrating a flood inundation model (LISFLOOD-FP) for a flood event in December 2006 on the River Dee, North Wales, UK. The flood extent is delineated from an ERS-2 SAR image of the event using an active contour model (snake), and water levels at the flood margin calculated through intersection of the shoreline vector with LiDAR topographic data. Gauged water levels are used to create a reference water surface slope for comparison with the satellite-derived water levels. Residuals between the satellite observed data points and those from the reference line are spatially clustered into groups of similar values. We show that model calibration achieved using pattern matching of observed and predicted flood extent is negatively influenced by this spatial dependency in the data. By contrast, model calibration using water elevations produces realistic calibrated optimum friction parameters even when spatial dependency is present. To test the impact of removing spatial dependency a new method of evaluating flood inundation model performance is developed by using multiple random subsamples of the water surface elevation data points. By testing for spatial dependency using Moran’s I, multiple subsamples of water elevations that have no significant spatial dependency are selected. The model is then calibrated against these data and the results averaged. This gives a near identical result to calibration using spatially dependent data, but has the advantage of being a statistically robust assessment of model performance in which we can have more confidence. Moreover, by using the variations found in the subsamples of the observed data it is possible to assess the effects of observational uncertainty on the assessment of flooding risk.
Resumo:
A Bond Graph is a graphical modelling technique that allows the representation of energy flow between the components of a system. When used to model power electronic systems, it is necessary to incorporate bond graph elements to represent a switch. In this paper, three different methods of modelling switching devices are compared and contrasted: the Modulated Transformer with a binary modulation ratio (MTF), the ideal switch element, and the Switched Power Junction (SPJ) method. These three methods are used to model a dc-dc Boost converter and then run simulations in MATLAB/SIMULINK. To provide a reference to compare results, the converter is also simulated using PSPICE. Both quantitative and qualitative comparisons are made to determine the suitability of each of the three Bond Graph switch models in specific power electronics applications
Resumo:
Ice cloud representation in general circulation models remains a challenging task, due to the lack of accurate observations and the complexity of microphysical processes. In this article, we evaluate the ice water content (IWC) and ice cloud fraction statistical distributions from the numerical weather prediction models of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office, exploiting the synergy between the CloudSat radar and CALIPSO lidar. Using the last three weeks of July 2006, we analyse the global ice cloud occurrence as a function of temperature and latitude and show that the models capture the main geographical and temperature-dependent distributions, but overestimate the ice cloud occurrence in the Tropics in the temperature range from −60 °C to −20 °C and in the Antarctic for temperatures higher than −20 °C, but underestimate ice cloud occurrence at very low temperatures. A global statistical comparison of the occurrence of grid-box mean IWC at different temperatures shows that both the mean and range of IWC increases with increasing temperature. Globally, the models capture most of the IWC variability in the temperature range between −60 °C and −5 °C, and also reproduce the observed latitudinal dependencies in the IWC distribution due to different meteorological regimes. Two versions of the ECMWF model are assessed. The recent operational version with a diagnostic representation of precipitating snow and mixed-phase ice cloud fails to represent the IWC distribution in the −20 °C to 0 °C range, but a new version with prognostic variables for liquid water, ice and snow is much closer to the observed distribution. The comparison of models and observations provides a much-needed analysis of the vertical distribution of IWC across the globe, highlighting the ability of the models to reproduce much of the observed variability as well as the deficiencies where further improvements are required.
Resumo:
[1] Remotely sensed, multiannual data sets of shortwave radiative surface fluxes are now available for assimilation into land surface schemes (LSSs) of climate and/or numerical weather prediction models. The RAMI4PILPS suite of virtual experiments assesses the accuracy and consistency of the radiative transfer formulations that provide the magnitudes of absorbed, reflected, and transmitted shortwave radiative fluxes in LSSs. RAMI4PILPS evaluates models under perfectly controlled experimental conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical for model comparison with in situ observations. More specifically, the shortwave radiation is separated into a visible and near-infrared spectral region, and the quality of the simulated radiative fluxes is evaluated by direct comparison with a 3-D Monte Carlo reference model identified during the third phase of the Radiation transfer Model Intercomparison (RAMI) exercise. The RAMI4PILPS setup thus allows to focus in particular on the numerical accuracy of shortwave radiative transfer formulations and to pinpoint to areas where future model improvements should concentrate. The impact of increasing degrees of structural and spectral subgrid variability on the simulated fluxes is documented and the relevance of any thus emerging biases with respect to gross primary production estimates and shortwave radiative forcings due to snow and fire events are investigated.
Resumo:
Trends in the position of the DJF Austral jet have been analysed for multi-model ensemble simulations of a subset of high- and low-top models for the periods 1960-2000, 2000-2050, and 2050-2098 under the CMIP5 historical, RCP4.5, and RCP8.5 scenarios. Comparison with ERA-Interim, CFSR and the NCEP/NCAR reanalysis shows that the DJF and annual mean jet positions in CMIP5 models are equatorward of reanalyses for the 1979-2006 mean. Under the RCP8.5 scenario, the mean jet position in the high-top models moves 3 degrees poleward of its 1860-1900 position by 2098, compared to just over 2 degrees for the low-top models. Changes in jet position are linked to changes in the meridional temperature gradient. Compared to low-top models, the high-top models predict greater warming in the tropical upper troposphere due to increased greenhouse gases for all periods considered: up to 0.28 K/decade more in the period 2050-2098 under the RCP8.5 scenario. Larger polar lower-stratospheric cooling is seen in high-top models: -1.64 K/decade compared to -1.40 K/decade in the period 1960-2000, mainly in response to ozone depletion, and -0.41 K/decade compared to -0.12 K/decade in the period 2050-2098, mainly in response to increases in greenhouse gases. Analysis suggests that there may be a linear relationship between the trend in jet position and meridional temperature gradient, even under strong forcing. There were no clear indications of an approach to a geometric limit on the absolute magnitude of the poleward shift by 2100.
Resumo:
In the last decade, a vast number of land surface schemes has been designed for use in global climate models, atmospheric weather prediction, mesoscale numerical models, ecological models, and models of global changes. Since land surface schemes are designed for different purposes they have various levels of complexity in the treatment of bare soil processes, vegetation, and soil water movement. This paper is a contribution to a little group of papers dealing with intercomparison of differently designed and oriented land surface schemes. For that purpose we have chosen three schemes for classification: i) global climate models, BATS (Dickinson et al., 1986; Dickinson et al., 1992); ii) mesoscale and ecological models, LEAF (Lee, 1992) and iii) mesoscale models, LAPS (Mihailović, 1996; Mihailović and Kallos, 1997; Mihailović et al., 1999) according to the Shao et al. (1995) classification. These schemes were compared using surface fluxes and leaf temperature outputs obtained by time integrations of data sets derived from the micrometeorological measurements above a maize field at an experimental site in De Sinderhoeve (The Netherlands) for 18 August, 8 September, and 4 October 1988. Finally, comparison of the schemes was supported applying a simple statistical analysis on the surface flux outputs.
Resumo:
The Kalpana Very High Resolution Radiometer (VHRR) water vapour (WV) channel is very similar to the WV channel of the Meteosat Visible and Infrared Radiation Imager (MVIRI) on Meteosat-7, and both satellites observe the Indian subcontinent. Thus it is possible to compare the performance of VHRR and MVIRI in numerical weather prediction (NWP) models. In order to do so, the impact of Kalpana- and Meteosat-7-measured WV radiances was evaluated using analyses and forecasts of moisture, temperature, geopotential and winds, using the European Centre for Medium-range Weather Forecasts (ECMWF) NWP model. Compared with experiments using Meteosat-7, the experiments using Kalpana WV radiances show a similar fit to all observations and produce very similar forecasts.
Resumo:
Abstract: Long-term exposure of skylarks to a fictitious insecticide and of wood mice to a fictitious fungicide were modelled probabilistically in a Monte Carlo simulation. Within the same simulation the consequences of exposure to pesticides on reproductive success were modelled using the toxicity-exposure-linking rules developed by R.S. Bennet et al. (2005) and the interspecies extrapolation factors suggested by R. Luttik et al.(2005). We built models to reflect a range of scenarios and as a result were able to show how exposure to pesticide might alter the number of individuals engaged in any given phase of the breeding cycle at any given time and predict the numbers of new adults at the season’s end.