96 resultados para speech segmentation
Resumo:
Investments in direct real estate are inherently difficult to segment compared to other asset classes due to the complex and heterogeneous nature of the asset. The most common segmentation in real estate investment analysis relies on property sector and geographical region. In this paper, we compare the predictive power of existing industry classifications with a new type of segmentation using cluster analysis on a number of relevant property attributes including the equivalent yield and size of the property as well as information on lease terms, number of tenants and tenant concentration. The new segments are shown to be distinct and relatively stable over time. In a second stage of the analysis, we test whether the newly generated segments are able to better predict the resulting financial performance of the assets than the old dichotomous segments. Applying both discriminant and neural network analysis we find mixed evidence for this hypothesis. Overall, we conclude from our analysis that each of the two approaches to segmenting the market has its strengths and weaknesses so that both might be applied gainfully in real estate investment analysis and fund management.
Resumo:
The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain
Resumo:
This paper analyses developments in the growth and configuration of the institutional savings markets within the European Union. The paper discusses the changing socio-economic context in which investment services within the EU are being delivered. The is followed by an examination of drivers of market integration such as the growth and consolidation of the fund management industry, the demographic and fiscal pressures for reform of pensions markets and the process and effects of the deregulation of investment services markets. There is a review of outstanding sources of market segmentation. The projections for future growth in pensions are outlined and implications for real estate investment assessed. It is concluded that, although numerous imponderables render reliable quantitative projections problematic, growth and restructuring of the institutional savings market is likely to increase cross-border capital flows to real estate markets.
Resumo:
Automatically extracting interesting objects from videos is a very challenging task and is applicable to many research areas such robotics, medical imaging, content based indexing and visual surveillance. Automated visual surveillance is a major research area in computational vision and a commonly applied technique in an attempt to extract objects of interest is that of motion segmentation. Motion segmentation relies on the temporal changes that occur in video sequences to detect objects, but as a technique it presents many challenges that researchers have yet to surmount. Changes in real-time video sequences not only include interesting objects, environmental conditions such as wind, cloud cover, rain and snow may be present, in addition to rapid lighting changes, poor footage quality, moving shadows and reflections. The list provides only a sample of the challenges present. This thesis explores the use of motion segmentation as part of a computational vision system and provides solutions for a practical, generic approach with robust performance, using current neuro-biological, physiological and psychological research in primate vision as inspiration.
Resumo:
Three experiments measured constancy in speech perception, using natural-speech messages or noise-band vocoder versions of them. The eight vocoder-bands had equally log-spaced center-frequencies and the shapes of corresponding “auditory” filters. Consequently, the bands had the temporal envelopes that arise in these auditory filters when the speech is played. The “sir” or “stir” test-words were distinguished by degrees of amplitude modulation, and played in the context; “next you’ll get _ to click on.” Listeners identified test-words appropriately, even in the vocoder conditions where the speech had a “noise-like” quality. Constancy was assessed by comparing the identification of test-words with low or high levels of room reflections across conditions where the context had either a low or a high level of reflections. Constancy was obtained with both the natural and the vocoded speech, indicating that the effect arises through temporal-envelope processing. Two further experiments assessed perceptual weighting of the different bands, both in the test word and in the context. The resulting weighting functions both increase monotonically with frequency, following the spectral characteristics of the test-word’s [s]. It is suggested that these two weighting functions are similar because they both come about through the perceptual grouping of the test-word’s bands.
Resumo:
When speech is in competition with interfering sources in rooms, monaural indicators of intelligibility fail to take account of the listener’s abilities to separate target speech from interfering sounds using the binaural system. In order to incorporate these segregation abilities and their susceptibility to reverberation, Lavandier and Culling [J. Acoust. Soc. Am. 127, 387–399 (2010)] proposed a model which combines effects of better-ear listening and binaural unmasking. A computationally efficient version of this model is evaluated here under more realistic conditions that include head shadow, multiple stationary noise sources, and real-room acoustics. Three experiments are presented in which speech reception thresholds were measured in the presence of one to three interferers using real-room listening over headphones, simulated by convolving anechoic stimuli with binaural room impulse-responses measured with dummy-head transducers in five rooms. Without fitting any parameter of the model, there was close correspondence between measured and predicted differences in threshold across all tested conditions. The model’s components of better-ear listening and binaural unmasking were validated both in isolation and in combination. The computational efficiency of this prediction method allows the generation of complex “intelligibility maps” from room designs. © 2012 Acoustical Society of America