70 resultados para spatial patterns


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A record of dust deposition events between 2009 and 2012 on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow ice core is presented for the first time for this region. A combination of isotopic analysis, SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (cf. 20–100 km) resolution. Seventeen dust deposition events were detected; fourteen occurred in March–June, one in February and two in October. Four events originated in the Sahara, predominantly in north-eastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric south-westerly flow with daily winds speeds of 20–30 m s−1 at 700 hPa level and, although these events were less frequent, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centered over or extending towards the Caspian Sea and a weaker southerly or south-easterly flow towards the Caucasus Mountains with daily wind speeds of 12–18 m s−1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterise dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 μm and 4.16 μm. Most samples were characterised by modal values of 2.0–2.8 μm with an average of 2.6 μm and there was no significant difference between dust from the Sahara and the Middle East.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A climatology of cyclones with a focus on their relation to wind storm tracks in the Mediterranean region (MR) is presented. Trends in the frequency of cyclones and wind storms, as well as variations associated with the North Atlantic Oscillation (NAO), the East Atlantic/West Russian (EAWR) and the Scandinavian variability pattern (SCAND) are discussed. The study is based on the ERA40 reanalysis dataset. Wind storm tracks are identified by tracking clusters of adjacent grid boxes characterised by extremely high local wind speeds. The wind track is assigned to a cyclone track independently identified with an objective scheme. Areas with high wind activity – quantified by extreme wind tracks – are typically located south of the Golf of Genoa, south of Cyprus, southeast of Sicily and west of the Iberian Peninsula. About 69% of the wind storms are caused by cyclones located in the Mediterranean region, while the remaining 31% can be attributed to North Atlantic or Northern European cyclones. The North Atlantic Oscillation, the East Atlantic/West Russian pattern and the Scandinavian pattern all influence the amount and spatial distribution of wind inducing cyclones and wind events in the MR. The strongest signals exist for the NAO and the EAWR pattern, which are both associated with an increase in the number of organised strong wind events in the eastern MR during their positive phase. On the other hand, the storm numbers decrease over the western MR for the positive phase of the NAO and over the central MR during the positive phase of the EAWR pattern. The positive phase of the Scandinavian pattern is associated with a decrease in the number of winter wind storms over most of the MR. A third of the trends in the number of wind storms and wind producing cyclones during the winter season of the ERA40 period may be attributed to the variability of the North Atlantic Oscillation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow patterns generated by a pulsating jet used to study hydrodynamic modulated voltammetry (HMV) are investigated. It is shown that the pronounced edge effect reported previously is the result of the generation of a vortex ring from the pulsating jet. This vortex behaviour of the pulsating jet system is imaged using a number of visualisation techniques. These include a dye system and an electrochemically generated bubble stream. In each case a toroidal vortex ring was observed. Image analysis revealed that the velocity of this motion was of the order of 250 mm s−1 with a corresponding Reynolds number of the order of 1200. This motion, in conjunction with the electrode structure, is used to explain the strong ‘ring and halo’ features detected by electrochemical mapping of the system reported previously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In homogeneous environments, by overturning the possibility of competitive exclusion among phytoplankton species, and by regulating the dynamics of overall plankton population, toxin-producing phytoplankton (TPP) potentially help in maintaining plankton diversity—a result shown recently. Here, I explore the competitive effects of TPP on phytoplankton and zooplankton species undergoing spatial movements in the subsurface water. The spatial interactions among the species are represented in the form of reaction-diffusion equations. Suitable parametric conditions under which Turing patterns may or may not evolve are investigated. Spatiotemporal distributions of species biomass are simulated using the diffusivity assumptions realistic for natural planktonic systems. The study demonstrates that spatial movements of planktonic systems in the presence of TPP generate and maintain inhomogeneous biomass distribution of competing phytoplankton, as well as grazer zooplankton, thereby ensuring the persistence of multiple species in space and time. The overall results may potentially explain the sustainability of biodiversity and the spatiotemporal emergence of phytoplankton and zooplankton species under the influence of TPP combined with their physical movement in the subsurface water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solar and longwave environmental irradiance geometry (SOLWEIG) model simulates spatial variations of 3-D radiation fluxes and mean radiant temperature (T mrt) as well as shadow patterns in complex urban settings. In this paper, a new vegetation scheme is included in SOLWEIG and evaluated. The new shadow casting algorithm for complex vegetation structures makes it possible to obtain continuous images of shadow patterns and sky view factors taking both buildings and vegetation into account. For the calculation of 3-D radiation fluxes and T mrt, SOLWEIG only requires a limited number of inputs, such as global shortwave radiation, air temperature, relative humidity, geographical information (latitude, longitude and elevation) and urban geometry represented by high-resolution ground and building digital elevation models (DEM). Trees and bushes are represented by separate DEMs. The model is evaluated using 5 days of integral radiation measurements at two sites within a square surrounded by low-rise buildings and vegetation in Göteborg, Sweden (57°N). There is good agreement between modelled and observed values of T mrt, with an overall correspondence of R 2 = 0.91 (p < 0.01, RMSE = 3.1 K). A small overestimation of T mrt is found at locations shadowed by vegetation. Given this good performance a number of suggestions for future development are identified for applications which include for human comfort, building design, planning and evaluation of instrument exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ground-based observations of dayside auroral forms and magnetic perturbations in the arctic sectors of Svalbard and Greenland, in combination with the high-resolution measurements of ionospheric ion drift and temperature by the EISCAT radar, are used to study temporal/spatial structures of cusp-type auroral forms in relation to convection. Large-scale patterns of equivalent convection in the dayside polar ionosphere are derived from the magnetic observations in Greenland and Svalbard. This information is used to estimate the ionospheric convection pattern in the vicinity of the cusp/cleft aurora. The reported observations, covering the period 0700-1130 UT, on January 11, 1993, are separated into four intervals according to the observed characteristics of the aurora and ionospheric convection. The morphology and intensity of the aurora are very different in quiet and disturbed intervals. A latitudinally narrow zone of intense and dynamical 630.0 nm emission equatorward of 75 degrees MLAT, was observed during periods of enhanced antisunward convection in the cusp region. This (type 1 cusp aurora) is considered to be the signature of plasma entry via magnetopause reconnection at low magnetopause latitudes, i.e. the low-latitude boundary layer (LLB I,). Another zone of weak 630.0 nm emission (type 2 cusp aurora) was observed to extend up to high latitudes (similar to 79 degrees MLAT) during relatively quiet magnetic conditions, when indications of reverse (sunward) convection was observed in the dayside polar cap. This is postulated to be a signature of merging between a northward directed IMF (B-z > 0) and the geomagnetic field poleward of the cusp. The coexistence of type 1 and 2 auroras was observed under intermediate circumstances. The optical observations from Svalbard and Greenland were also used to determine the temporal and spatial evolution of type 1 auroral forms, i.e. poleward-moving auroral events occurring in the vicinity of a rotational convection reversal in the early post-noon sector. Each event appeared as a local brightening at the equatorward boundary of the pre-existing type 1 cusp aurora, followed by poleward and eastward expansions of luminosity. The auroral events were associated with poleward-moving surges of enhanced ionospheric convection and F-layer ion temperature as observed by the EISCAT radar in Tromso. The EISCAT ion flow data in combination with the auroral observations show strong evidence for plasma flow across the open/closed field line boundary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no ‘cure’ at the present time. Brain–computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. Approach. Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. Main results. It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). Significance. The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no 'cure' at the present time. Brain-computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. APPROACH: Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. MAIN RESULTS: It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). SIGNIFICANCE: The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) are crucial to the functioning of the plant–soil system, but little is known about the spatial structuring of AMF communities across landscapes modified by agriculture. AMF community composition was characterized across four sites in the highly cleared south-western Australian wheatbelt that were originally dominated by forb-rich eucalypt woodlands. Environmentally induced spatial structuring in AMF composition was examined at four scales: the regional scale associated with location, the site scale associated with past management (benchmark woodlands with no agricultural management history, livestock grazing, recent revegetation), the patch scale associated with trees and canopy gaps, and the fine scale associated with the herbaceous plant species beneath which soils were sourced. Field-collected soils were cultured in trap pots; then, AMF composition was determined by identifying spores and through ITS1 sequencing. Structuring was strongest at site scales, where composition was strongly related to prior management and associated changes in soil phosphorus. The two fields were dominated by the genera Funneliformis and Paraglomus, with little convergence back to woodland composition after revegetation. The two benchmark woodlands were characterized by Ambispora gerdemannii and taxa from Gigasporaceae. Their AMF communities were strongly structured at patch scales associated with trees and gaps, in turn most strongly related to soil N. By contrast, there were few patterns at fine scales related to different herbaceous plant species, or at regional scales associated with the 175 km distance between benchmark woodlands. Important areas for future investigation are to identify the circumstances in which recolonization by woodland AMF may be limited by fungal propagule availability, reduced plant diversity and/or altered chemistry in agricultural soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little research so far has been devoted to understanding the diffusion of grassroots innovation for sustainability across space. This paper explores and compares the spatial diffusion of two networks of grassroots innovations, the Transition Towns Network (TTN) and Gruppi di Acquisto Solidale (Solidarity Purchasing Groups – GAS), in Great Britain and Italy. Spatio-temporal diffusion data were mined from available datasets, and patterns of diffusion were uncovered through an exploratory data analysis. The analysis shows that GAS and TTN diffusion in Italy and Great Britain is spatially structured, and that the spatial structure has changed over time. TTN has diffused differently in Great Britain and Italy, while GAS and TTN have diffused similarly in central Italy. The uneven diffusion of these grassroots networks on the one hand challenges current narratives on the momentum of grassroots innovations, but on the other highlights important issues in the geography of grassroots innovations for sustainability, such as cross-movement transfers and collaborations, institutional thickness, and interplay of different proximities in grassroots innovation diffusion.