230 resultados para semi-implicit scheme
Resumo:
Aeolian mineral dust aerosol is an important consideration in the Earth's radiation budget as well as a source of nutrients to oceanic and land biota. The modelling of aeolian mineral dust has been improving consistently despite the relatively sparse observations to constrain them. This study documents the development of a new dust emissions scheme in the Met Office Unified ModelTM (MetUM) based on the Dust Entrainment and Deposition (DEAD) module. Four separate case studies are used to test and constrain the model output. Initial testing was undertaken on a large dust event over North Africa in March 2006 with the model constrained using AERONET data. The second case study involved testing the capability of the model to represent dust events in the Middle East without being re-tuned from the March 2006 case in the Sahara. While the model is unable to capture some of the daytime variation in AERONET AOD there is good agreement between the model and observed dust events. In the final two case studies new observations from in situ aircraft data during the Dust Outflow and Deposition to the Ocean (DODO) campaigns in February and August 2006 were used. These recent observations provided further data on dust size distributions and vertical profiles to constrain the model. The modelled DODO cases were also compared to AERONET data to make sure the radiative properties of the dust were comparable to observations. Copyright © 2009 Royal Meteorological Society and Crown Copyright
Resumo:
The white paper ‘Pharmacy in England’ advocates establishing a new pharmacy regulator, building leadership and integrating undergraduate education.[1] Students must morph into competent pharmacists with the skills, expertise and confidence to lead the profession to 2020 and beyond.[2] One way individuals are encouraged to ‘professionalise’ is through participation in personal/professional development schemes. The British Pharmaceutical Students’ Association (BPSA) and the College of Pharmacy Practice have operated a professional development certificate (PDC) scheme since 2001. The scheme rewards students with a joint certificate for evidence of participation in five accredited activities in one academic year. Although the scheme is relevant to development of students, less than 2% of BPSA members take part annually. We wanted to understand the reasons for the low uptake. Our primary objectives were to examine the portrayal of the scheme and to investigate what it signifies to individuals. We describe our attempts to apply social marketing techniques[3] to the PDC, and we use ‘logical levels of change’[4] to highlight a paradox with personal identity.
Resumo:
The professional development certificate scheme, developed by the British Pharmaceutical Students’ Association, can bridge the gap between pharmacy undergraduates, tutors and employers. Jamie Wilkinson, Chris Cairns and Parastou Donyai explain.
Resumo:
In this reply to Neal and Hesketh and to the commentators, we argue that implicit knowledge is partly abstract and can be usefully defined by the criteria of both metaknowledge and intentional control. We suggest that the pattern of dissociations supports a claim of separate implicit and explicit learning modes. According to our characterization, implicit learning leads to knowledge that is not automatically represented as knowledge by the learning process; instead, the presence of knowledge has to be inferred by the subject (partial explicitation) if metaknowledge is gained at all. During explicit learning, knowledge is automatically labeled as knowledge by the learning process, so that metaknowledge comes immediately and to the fullest extent. Finally, we suggest that implicit knowledge may to some degree apply regardless of intention.
Resumo:
By making use of TOVS Path-B satellite retrievals and ECMWF reanalyses, correlations between bulk microphysical properties of large-scale semi-transparent cirrus (visible optical thickness between 0.7 and 3.8) and thermodynamic and dynamic properties of the surrounding atmosphere have been studied on a global scale. These clouds constitute about half of all high clouds. The global averages (from 60°N to 60°S) of mean ice crystal diameter, De, and ice water path (IWP) of these clouds are 55 μm and 30 g m−2, respectively. IWP of these cirrus is slightly increasing with cloud-top temperature, whereas De of cold cirrus does not depend on this parameter. Correlations between De and IWp of large-scale cirrus seem to be different in the midlatitudes and in the tropics. However, we observe in general stronger correlations between De and IWP and atmospheric humidity and winds deduced from the ECMWF reanalyses: De and IWP increase both with increasing atmospheric water vapour. There is also a good distinction between different dynamical situations: In humid situations, IWP is on average about 10 gm−2 larger in regions with strong large-scale vertical updraft only that in regions with strong large-scale horizontal winds only, whereas the mean De of cold large-scale cirrus decreases by about 10 μm if both strong large-scale updraft and horizontal winds are present.
Resumo:
We have designed a highly parallel design for a simple genetic algorithm using a pipeline of systolic arrays. The systolic design provides high throughput and unidirectional pipelining by exploiting the implicit parallelism in the genetic operators. The design is significant because, unlike other hardware genetic algorithms, it is independent of both the fitness function and the particular chromosome length used in a problem. We have designed and simulated a version of the mutation array using Xilinix FPGA tools to investigate the feasibility of hardware implementation. A simple 5-chromosome mutation array occupies 195 CLBs and is capable of performing more than one million mutations per second. I. Introduction Genetic algorithms (GAs) are established search and optimization techniques which have been applied to a range of engineering and applied problems with considerable success [1]. They operate by maintaining a population of trial solutions encoded, using a suitable encoding scheme.
Resumo:
A case study of atmospheric aerosol measurements exploring the impact of the vertical distribution of aerosol chemical composition upon the radiative budget in North-Western Europe is presented. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) on both an airborne platform and a ground-based site at Cabauw in the Netherlands. The examined period in May 2008 was characterised by enhanced pollution loadings in North-Western Europe and was dominated by ammonium nitrate and Organic Matter (OM). Both ammonium nitrate and OM were observed to increase with altitude in the atmospheric boundary layer. This is primarily attributed to partitioning of semi-volatile gas phase species to the particle phase at reduced temperature and enhanced relative humidity. Increased ammonium nitrate concentrations in particular were found to strongly increase the ambient scattering potential of the aerosol burden, which was a consequence of the large amount of associated water as well as the enhanced mass. During particularly polluted conditions, increases in aerosol optical depth of 50–100% were estimated to occur due to the observed increase in secondary aerosol mass and associated water uptake. Furthermore, the single scattering albedo was also shown to increase with height in the boundary layer. These enhancements combined to increase the negative direct aerosol radiative forcing by close to a factor of two at the median percentile level. Such increases have major ramifications for regional climate predictions as semi-volatile components are often not included in aerosol models. The results presented here provide an ideal opportunity to test regional and global representations of both the aerosol vertical distribution and subsequent impacts in North-Western Europe. North-Western Europe can be viewed as an analogue for the possible future air quality over other polluted regions of the Northern Hemisphere, where substantial reductions in sulphur dioxide emissions have yet to occur. Anticipated reductions in sulphur dioxide in polluted regions will result in an increase in the availability of ammonia to form ammonium nitrate as opposed to ammonium sulphate. This will be most important where intensive agricultural practises occur. Our observations over North-Western Europe, a region where sulphur dioxide emissions have already been reduced, indicate that failure to include the semi-volatile behaviour of ammonium nitrate will result in significant errors in predicted aerosol direct radiative forcing. Such errors will be particularly significant on regional scales.
Resumo:
Three goats provided with oesophageal and ruminal cannulae were used to determine variations in dry matter (DM) and neutral-detergent fibre (NDF) degradability of the forage consumed when grazing thorn scrubland in the semi-arid region of north Mexico, during two consecutive dry and wet periods. Ingesta samples were incubated intraruminally, the data were fitted to the exponential equation P = a + b (1-e(-ct)) and statistically analysed using a randomized-block design. Organic matter and crude protein (CP) contents were higher (P < 0.05) in the wet seasons. Values of NDF were similar in dry and wet season of both years whereas higher numerical values of acid-detergent fibre (ADF), lignin and cellulose were registered in the dry seasons. DM and NDF degradabilities after 24 and 48 h of ruminal incubation were higher (P < 0.05) in the wet seasons. Higher values (P < 0.05) in DM and NDF bag losses at zero time (A fraction) were registered in the two wet seasons. The insoluble but fermentable DM and NDF (B fractions) were higher (P < 0.05) in the 1999 wet season and variable in the rest of the studied period. Numerically higher values of DM and NDF c fraction were found in wet periods, whereas DM and NDF potential degradabilities were higher (P < 0.05) in the wet season in 1999 and similar across seasons in 2000. Lowest (P < 0.05) contents of CP in grazed forage, DM and NDF degradabilities after 48 h of ruminal incubation, and A, and B, and c fractions were observed in the dry seasons. Thus, these results may be related to both the lower feeding value of forage consumed by the animals and lower performance of livestock during this period. Then, the DM and NDF degradability after 48 h, together with the insoluble but fermentable matter and the c fraction permit the nutritive value of the forage consumed by grazing goats to be accurately described.
Resumo:
Models are important tools to assess the scope of management effects on crop productivity under different climatic and soil regimes. Accordingly, this study developed and used a simple model to assess the effects of nitrogen fertiliser and planting density on the water use efficiency (q) of maize in semi-arid Kenya. Field experiments were undertaken at Sonning, Berkshire, UK, in 1996 (one sowing) and 1997 (two sowings). The results from the field experiments plus soil and weather data for Machakos, Kenya (1 degree 33'S, 37 degree 14'E and 1560 m above sea level), were then used to predict the effects that N application and planting density may have on water use by a maize crop grown in semi-arid Kenya. The increase in q due to N application was greater under irrigated (15%-19%) than rainfed (7%-8%) conditions. Also, high planting density increased q (by 13%) under irrigation but decreased q (by 17%) under rainfed conditions. The current study has shown the significance of crop modelling techniques in assessing the influence of N and planting density on maize production in one region of semi-arid Kenya where there is high variability of rainfall.