179 resultados para saturated fatty acids
Resumo:
The effect of increased dietary intakes of alpha-linolenic acid (ALNA) or eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 2 months upon plasma lipid composition and capacity for conversion of ALNA to longer-chain metabolites was investigated in healthy men (52 (SD 12) years). After a 4-week baseline period when the subjects substituted a control spread, a test meal containing [U-C-13]ALNA (700 mg) was consumed to measure conversion to EPA, docosapentaenoic acid (DPA) and DHA over 48 h. Subjects were then randomised to one of three groups for 8 weeks before repeating the tracer study: (1) continued on same intake (control, n 5); (2) increased ALNA intake (10 g/d, n 4); (3) increased EPA+DHA intake (1.5 g/d, n 5). At baseline, apparent fractional conversion of labelled ALNA was: EPA 2.80, DPA 1.20 and DRA 0.04%. After 8 weeks on the control diet, plasma lipid composition and [C-13]ALNA conversion remained unchanged compared with baseline. The high-ALNA diet resulted in raised plasma triacylglycerol-EPA and -DPA concentrations and phosphatidylcholine-EPA concentration, whilst [C-13]ALNA conversion was similar to baseline. The high-(EPA+DHA) diet raised plasma phosphatidylcholine-EPA and -DHA concentrations, decreased [C-13]ALNA conversion to EPA (2-fold) and DPA (4-fold), whilst [C-13]ALNA conversion to DHA was unchanged. The dietary interventions did not alter partitioning of ALNA towards beta-oxidation. The present results indicate ALNA conversion was down-regulated by increased product (EPA+DHA) availability, but was not up-regulated by increased substrate (ALNA) consumption. This suggests regulation of ALNA conversion may limit the influence of variations in dietary n-3 fatty acid intake on plasma lipid compositions.
Resumo:
Background: Indian Asians in Western countries have a higher rate of coronary artery disease than do the indigenous white populations, and this higher rate may be influenced by a dietary imbalance of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Objective: The objective of the study was to test the hypothesis that a high background dietary intake of n-6 PUFA attenuates the effects of fish-oil supplementation on insulin sensitivity and associated blood lipids of the metabolic syndrome. Design: Twenty-nine Indian Asian men were recruited to participate in a 12-wk dietary intervention trial. Volunteers were randomly assigned to receive either a moderate or a high n-6 PUFA diet featuring modified oils and spreads over a 6-wk period. After this 6-wk period, both groups were supplemented with 4.0 g fish oil/d (2.5 g eicosapentaenoic acid + docosahexaenoic acid) for an additional 6 wk in combination with the dietary treatment. Volunteers participated in a postprandial study and an insulin sensitivity test after the 6-wk dietary intervention and again after the fish-oil supplementation period. Results: There was no significant time X treatment interaction for blood lipids or insulin action after dietary intervention with the moderate or high n-6 PUFA diets in combination with fish oil. After the 6-wk period of fish oil supplementation, fasting and postprandial plasma triacylglycerol concentrations decreased significantly. Conclusion: The background dietary n-6 PUFA concentration did not modulate the effect of fish-oil supplementation on blood lipids or measures of insulin sensitivity in this ethnic group.
Resumo:
In this study was analyzed the effect of crop year and harvesting time on the fatty acid composition of cv. Picual virgin olive oil. The study was carried out during the fruit ripening period for three crop seasons. The mean fatty acid composition of Picual oils was determined. The oils contained palmitic acid (11.9%), oleic acid (79.3%), and linoleic acid (2.95%). The content of palmitic acid and saturated fatty acids decreased during fruit ripening while oleic and linoleic acids increased. The amount of stearic and linolenic acids decreased. The amount of saturated acids, palmitic and stearic, and the polyunsaturated acids linoleic and linolenic was dependent on the time of harvest, whereas the amount of oleic acid varied with the crop year. The differences observed between crop years for both palmitic and linoleic acid may be explained by the differences in the temperature during oil biosynthesis and by the amount of summer rainfall for oleic acid content. A significant relationship was observed between the MUFA/PUFA ratio and the oxidative stability measured by the Rancimat method.
Resumo:
Chronic fish oil intervention had been shown to have a positive impact on endothelial function. Although high-fat meals have often been associated with a loss of postprandial vascular reactivity, studies examining the effects of fish oil fatty acids on vascular function in the postprandial phase are limited. The aim of the present study was to examine the impact of the addition of fish oil fatty acids to a standard test meal on postprandial vascular reactivity. A total of 25 men received in a random order either a placebo oil meal (40 g of mixed fat; fatty acid profile representative of the U.K. diet) or a fish oil meal (31 g of mixed fat and 9 g of fish oil) on two occasions. Vascular reactivity was measured at baseline (0 h) and 4 h after the meal by laser Doppler iontophoresis, and blood samples were taken for the measurement of plasma lipids, total nitrite, glucose and insulin. eNOS (endothelial NO synthase) and NADPH oxidase gene expression were determined in endothelial cells after incubation with TRLs (triacylglycerol-rich lipoproteins) isolated from the plasma samples taken at 4 h. Compared with baseline, sodium nitroprusside (an endothelium-independent vasodilator)-induced reactivity (P = 0.024) and plasma nitrite levels (P = 0.001) were increased after the fish oil meal. In endothelial cells, postprandial TRLs isolated after the fish oil meal increased eNOS and decreased NADPH oxidase gene expression compared with TRLs isolated following the placebo oil meal (P <= 0.03). In conclusion, meal fatty acids appear to be an important determinant of vascular reactivity, with fish oils significantly improving postprandial endothelium-independent vasodilation.
Resumo:
The leptin receptor (LEPR) is associated with insulin resistance, a key feature of metabolic syndrome (MetS). Gene-fatty acid interactions may affect MetS risk. The objective was to investigate the relationship among LEPR polymorphisms, insulin resistance, and MetS risk and whether plasma fatty acids, a biomarker of dietary fatty acids, modulate this. LEPR polymorphisms (rs10493380, rs1137100, rs1137101, rs12067936, rs1805096, rs2025805, rs3790419, rs3790433, rs6673324, and rs8179183), biochemical measurements, and plasma fatty acid profiles were determined in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). LEPR rs3790433 GG homozygotes had increased MetS risk compared with the minor A allele carriers [odds ratio (OR) = 1.65; 95% CI: 1.05–2.57; P = 0.028], which may be accounted for by their increased risk of elevated insulin concentrations (OR 2.40; 95% CI: 1.28–4.50; P = 0.006) and insulin resistance (OR = 2.15; 95% CI: 1.18–3.90; P = 0.012). Low (less than median) plasma (n-3) and high (n-6) PUFA status exacerbated the genetic risk conferred by GG homozygosity to hyperinsulinemia (OR 2.92–2.94) and insulin resistance (OR 3.40–3.47). Interestingly, these associations were abolished against a high (n-3) or low (n-6) PUFA background. Importantly, we replicated some of these findings in an independent cohort. Homozygosity for the LEPR rs3790433 G allele was associated with insulin resistance, which may predispose to increased MetS risk. Novel gene-nutrient interactions between LEPR rs3790433 and PUFA suggest that these genetic influences were more evident in individuals with low plasma (n-3) or high plasma (n-6) PUFA.
Resumo:
Objective Omega-3 polyunsaturated fatty acids (n-3 PUFA) may protect against the development of cardiovascular disease (CVD). Genotype at key genes such as nitric oxide synthase (NOS3) may determine responsiveness to fatty acids. Gene–nutrient interactions may be important in modulating the development of CVD, particularly in high-risk individuals with the metabolic syndrome (MetS). Methods Biomarkers of CVD risk, plasma fatty acid composition, and NOS3 single nucleotide polymorphism (SNP) genotype (rs11771443, rs1800783, rs1800779, rs1799983, rs3918227, and rs743507) were determined in 450 individuals with the MetS from the LIPGENE dietary intervention cohort. The effect of dietary fat modification for 12 weeks on metabolic indices of the MetS was determined to understand potential NOS3 gene–nutrient interactions. Results Several markers of inflammation and dyslipidaemia were significantly different between the genotype groups. A significant gene–nutrient interaction was observed between the NOS3 rs1799983 SNP and plasma n-3 PUFA status on plasma triacylglycerol (TAG) concentrations. Minor allele carriers (AC + AA) showed an inverse association with significantly higher plasma TAG concentrations in those with low plasma n-3 PUFA status and vice versa but the major allele homozygotes (CC) did not. Following n-3 PUFA supplementation, plasma TAG concentrations of minor allele carriers of rs1799983 were considerably more responsive to changes in plasma n-3 PUFA, than major allele homozygotes. Conclusions Carriers of the minor allele at rs1799983 in NOS3 have plasma TAG concentrations which are more responsive to n-3 PUFA. This suggests that these individuals might show greater beneficial effects of n-3 PUFA consumption to reduce plasma TAG concentrations.
Resumo:
With the rising rate of obesity, there is considerable interest in dietary strategies to reduce insulin resistance, a major characteristic of the metabolic syndrome and type 2 diabetes. Diets rich in monounsaturated fatty acids (MUFA) have been suggested as an alternative to low-fat, high-carbohydrate diets to improve glycemic control. However, inconsistent effects have been observed with MUFA-rich diets in both healthy and insulin-resistant individuals. In studies that have reported favorable effects on insulin sensitivity, Mediterranean-style diets have been used that are rich not only in MUFA but also whole-grain foods, fiber, and carbohydrates with a low glycemic index. There is a need for intervention studies to examine the true impact of MUFA-rich oils on glycemic control in both Mediterranean and non-Mediterranean populations. In addition, the metabolic and genotypic status of the participants may also play a role in the inter-individual variability in insulin sensitivity in response to MUFA-rich diets.
Resumo:
Human consumption of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) is below recommendations, and enriching chicken meat (by incorporating LC n-3 PUFA into broiler diets) is a viable means of increasing consumption. Fish oil is the most common LC n-3 PUFA supplement used but is unsustainable and reduces the oxidative stability of the meat. The objective of this experiment was to compare fresh fish oil (FFO) with fish oil encapsulated (EFO) in a gelatin matrix (to maintain its oxidative stability) and algal biomass at a low (LAG, 11), medium (MAG, 22), or high (HAG, 33 g/kg of diet) level of inclusion. The C22:6n-3 contents of the FFO, EFO, and MAG diets were equal. A control (CON) diet using blended vegetable oil was also made. As-hatched 1-d-old Ross 308 broilers (144) were reared (21 d) on a common starter diet then allocated to treatment pens (4 pens per treatment, 6 birds per pen) and fed treatment diets for 21 d before being slaughtered. Breast and leg meat was analyzed (per pen) for fatty acids, and cooked samples (2 pens per treatment) were analyzed for volatile aldehydes. Concentrations (mg/100 g of meat) of C20:5n-3, C22:5n-3, and C22:6n-3 were (respectively) CON: 4, 15, 24; FFO: 31, 46, 129; EFO: 18, 27, 122; LAG: 9, 19, 111; MAG: 6, 16, 147; and HAG: 9, 14, 187 (SEM: 2.4, 3.6, 13.1) in breast meat and CON: 4, 12, 9; FFO: 58, 56, 132; EFO: 63, 49, 153; LAG: 13, 14, 101; MAG: 11, 15, 102; HAG: 37, 37, 203 (SEM: 7.8, 6.7, 14.4) in leg meat. Cooked EFO and HAG leg meat was more oxidized (5.2 mg of hexanal/kg of meat) than the other meats (mean 2.2 mg/kg, SEM 0.63). It is concluded that algal biomass is as effective as fish oil at enriching broiler diets with C22:6 LC n-3 PUFA, and at equal C22:6n-3 contents, there is no significant difference between these 2 supplements on the oxidative stability of the meat that is produced.
Resumo:
Supplementing broiler diets with conventional vegetable oils has little effect on the long-chain n-3 PUFA (LC n-3 PUFA) content of the meat. The present study investigated the effect on fatty acid composition and sensory characteristics of chicken meat when broilers were fed oil extracted from soyabeans (SDASOY) that had been genetically engineered to produce C18 : 4n-3 (stearidonic acid (SDA), 240 mg/g oil). Three diets were fed to 120 birds (eight replicate pens of five birds) from 15 d to slaughter (41–50 d). Diets were identical apart from the oil added to them (45 and 50 g/kg as fed in the grower and finisher phases, respectively), which was either SDASOY, near-isogenic soya (CON) or fish oil (FISH). The LC n-3 PUFA content of the meat increased in the order CON, SDASOY and FISH. In breast meat with skin, the SDA concentration was 522, 13 and 37 (sem 14·4) mg/100 g meat for SDASOY, CON and FISH, respectively. Equivalent values for C20 : 5n-3 (EPA) were 53, 13 and 140 (sem 8·4); for C22 : 5n-3 (docosapentaenoic acid (DPA)) 65, 15 and 101 (sem 3·5); for C22 : 6n-3 (DHA) 19, 9 and 181 (sem 4·4). Leg meat (with skin) values for SDA were 861, 23 and 68 (sem 30·1); for EPA 87, 9 and 258 (sem 7·5); for DPA 95, 20 and 165 (sem 5·0); for DHA 29, 10 and 278 (sem 8·4). Aroma, taste and aftertaste of freshly cooked breast meat were not affected. Fishy aromas, tastes and aftertastes were associated with LC n-3 PUFA content of the meat, being most noticeable in the FISH leg meat (both freshly cooked and reheated) and in the reheated SDASOY leg meat.
Resumo:
Increasing rates of obesity have stimulated research into possible contributing factors, including specific dietary components such as trans fatty acids (TFAs). This review considers the evidence for an association between TFA intake and weight gain. It concludes that there is limited but consistent evidence from epidemiological studies, and from a primate model, that increased TFA consumption may result in a small additional weight gain. Data from a long-term study in a primate model suggest that TFA may have a greater adipogenic effect than cis monounsaturated fatty acids; however, there are currently inadequate mechanistic data to provide a comprehensive and plausible explanation for any such metabolic differences between the types of fatty acids.
Acute effects of meal fatty acid composition on insulin sensitivity in healthy post-menopausal women
Resumo:
Postprandial plasma insulin concentrations after a single high-fat meal may be modified by the presence of specific fatty acids although the effects of sequential meal ingestion are unknown. The aim of the present study was to examine the effects of altering the fatty acid composition in a single mixed fat-carbohydrate meal on glucose metabolism and insulin sensitivity of a second meal eaten 5 h later. Insulin sensitivity was assessed using a minimal model approach. Ten healthy post-menopausal women underwent four two-meal studies in random order. A high-fat breakfast (40 g fat) where the fatty acid composition was predominantly saturated fatty acids (SFA), n-6 polyunsaturated fatty acids (PUFA), long-chain n-3 PUFA or monounsaturated fatty acids (MUFA) was followed 5 h later by a low-fat, high-carbohydrate lunch (5.7 g fat), which was identical in all four studies. The plasma insulin response was significantly higher following the SFA meal than the other meals after both breakfast and lunch (P<0.006) although there was no effect of breakfast fatty acid composition on plasma glucose concentrations. Postprandial insulin sensitivity (SI(Oral)) was assessed for 180 min after each meal. SI(Oral) was significantly lower after lunch than after breakfast for all four test meals (P=0.019) following the same rank order (SFA < n-6 PUFA < n-3 PUFA < MUFA) for each meal. The present study demonstrates that a single meal rich in SFA reduces postprandial insulin sensitivity with 'carry-over' effects for the next meal.
Resumo:
The UK Food Standards Agency convened a group of expert scientists to review current research investigating the optimal dietary intake for n-9 cis-monounsaturated fatty acids (MUFA). The aim was to review the mechanisms underlying the reported beneficial effects of MUFA on CHD risk, and to establish priorities for future research. The issue of optimal MUFA intake is contingent upon optimal total fat intake; however, there is no consensus of opinion on what the optimal total fat intake should be. Thus, it was recommended that a large multi-centre study should look at the effects on CHD risk of MUFA replacement of saturated fatty acids in relation to varying total fat intakes; this study should be of sufficient size to take account of genetic variation, sex, physical activity and stage of life factors, as well as being of sufficient duration to account for adaptation to diets. Recommendations for studies investigating the mechanistic effects of MUFA were also made. Methods of manipulating the food chain to increase MUFA at the expense of saturated fatty acids were also discussed.