87 resultados para robot-robot coordination
Resumo:
For individuals with upper-extremity motor disabilities, the head-stick is a simple and intuitive means of performing manipulations because it provides direct proprioceptive information to the user. Through practice and use of inherent proprioceptive cues, users may become quite adept at using the head-stick for a number of different tasks. The traditional head-stick is limited, however, to the user's achievable range of head motion and force generation, which may be insufficient for many tasks. The authors describe an interface to a robot system which emulates the proprioceptive qualities of a traditional head-stick while also allowing for augmented end-effector ranges of force and motion. The design and implementation of the system in terms of coordinate transforms, bilateral telemanipulator architecture, safety systems, and system identification of the master is described, in addition to preliminary evaluation results.
Resumo:
We introduce the perspex machine which unifies projective geometry and Turing computation and results in a supra-Turing machine. We show two ways in which the perspex machine unifies symbolic and non-symbolic AI. Firstly, we describe concrete geometrical models that map perspexes onto neural networks, some of which perform only symbolic operations. Secondly, we describe an abstract continuum of perspex logics that includes both symbolic logics and a new class of continuous logics. We argue that an axiom in symbolic logic can be the conclusion of a perspex theorem. That is, the atoms of symbolic logic can be the conclusions of sub-atomic theorems. We argue that perspex space can be mapped onto the spacetime of the universe we inhabit. This allows us to discuss how a robot might be conscious, feel, and have free will in a deterministic, or semi-deterministic, universe. We ground the reality of our universe in existence. On a theistic point, we argue that preordination and free will are compatible. On a theological point, we argue that it is not heretical for us to give robots free will. Finally, we give a pragmatic warning as to the double-edged risks of creating robots that do, or alternatively do not, have free will.
Resumo:
A robot mounted camera is useful in many machine vision tasks as it allows control over view direction and position. In this paper we report a technique for calibrating both the robot and the camera using only a single corresponding point. All existing head-eye calibration systems we have encountered rely on using pre-calibrated robots, pre- calibrated cameras, special calibration objects or combinations of these. Our method avoids using large scale non-linear optimizations by recovering the parameters in small dependent groups. This is done by performing a series of planned, but initially uncalibrated robot movements. Many of the kinematic parameters are obtained using only camera views in which the calibration feature is at, or near the image center, thus avoiding errors which could be introduced by lens distortion. The calibration is shown to be both stable and accurate. The robotic system we use consists of camera with pan-tilt capability mounted on a Cartesian robot, providing a total of 5 degrees of freedom.
Resumo:
The authors consider the problem of a robot manipulator operating in a noisy workspace. The manipulator is required to move from an initial position P(i) to a final position P(f). P(i) is assumed to be completely defined. However, P(f) is obtained by a sensing operation and is assumed to be fixed but unknown. The authors approach to this problem involves the use of three learning algorithms, the discretized linear reward-penalty (DLR-P) automaton, the linear reward-penalty (LR-P) automaton and a nonlinear reinforcement scheme. An automaton is placed at each joint of the robot and by acting as a decision maker, plans the trajectory based on noisy measurements of P(f).
Resumo:
The existence of a specialized imitation module in humans is hotly debated. Studies suggesting a specific imitation impairment in individuals with autism spectrum disorders (ASD) support a modular view. However, the voluntary imitation tasks used in these studies (which require socio-cognitive abilities in addition to imitation for successful performance) cannot support claims of a specific impairment. Accordingly, an automatic imitation paradigm (a ‘cleaner’ measure of imitative ability) was used to assess the imitative ability of 16 adults with ASD and 16 non-autistic matched control participants. Participants performed a prespecified hand action in response to observed hand actions performed either by a human or a robotic hand. On compatible trials the stimulus and response actions matched, while on incompatible trials the two actions did not match. Replicating previous findings, the Control group showed an automatic imitation effect: responses on compatible trials were faster than those on incompatible trials. This effect was greater when responses were made to human than to robotic actions (‘animacy bias’). The ASD group also showed an automatic imitation effect and a larger animacy bias than the Control group. We discuss these findings with reference to the literature on imitation in ASD and theories of imitation.
Resumo:
A growing awareness of the potential for machine-mediated neurorehabilitation has led to several novel concepts for delivering these therapies. To get from laboratory demonstrators and prototypes to the point where the concepts can be used by clinicians in practice still requires significant additional effort, not least in the requirement to assess and measure the impact of any proposed solution. To be widely accepted a study is required to use validated clinical measures but these tend to be subjective, costly to administer and may be insensitive to the effect of the treatment. Although this situation will not change, there is good reason to consider both clinical and mechanical assessments of recovery. This article outlines the problems in measuring the impact of an intervention and explores the concept of providing more mechanical assessment techniques and ultimately the possibility of combining the assessment process with aspects of the intervention.
Resumo:
Octopus skin samples were tested under quasi-static and scissor cutting conditions to measure the in-plane material properties and fracture toughness. Samples from all eight arms of one octopus were tested statically to investigate how properties vary from arm to arm. Another nine octopus skins were measured to study the influence of body mass on skin properties. Influence of specimen location on skin mechanical properties was also studied. Material properties of skin, i.e. the Young's modulus, ultimate stress, failure strain and fracture toughness have been plotted against the position of skin along the length of arm or body. Statistical studies were carried out to help analyzing experimental data obtained. Results of this work will be used as guidelines for the design and development of artificial skins for an octopus-inspired robot.