78 resultados para protein kinase B (PKB)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 g/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)- containing FcR chain. Conversely, thrombin only activated at high concentrations ( 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2 mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)– containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature. (Circ Res. 2004;94:1598-1605.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence to suggest that neuroinflammatory processes contribute to the cascade of events that lead to the progressive neuronal damage observed in neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease. Therefore, treatment regimes aimed at modulating neuroinflammatory processes may act to slow the progression of these debilitating brain disorders. Recently, a group of dietary polyphenols known as flavonoids have been shown to exert neuroprotective effects in vivo and in neuronal cell models. In this review we discuss the evidence relating to the modulation of neuroinflammation by flavonoids. We highlight the evidence which suggests their mechanism of action involves: 1) attenuation of the release of cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α); 2) an inhibitory action against inducible nitric oxide synthase (iNOS) induction and subsequent nitric oxide (NO•) production; 3) inhibition of the activation of NADPH oxidase and subsequent reactive oxygen species generation; 4) a capacity to down-regulate the activity of pro-inflammatory transcription factors such as nuclear factor-κB (NF-κB); and 5) the potential to modulate signalling pathways such as mitogen-activated protein kinase (MAPK) cascade. We also consider the potential of these dietary compounds to represent novel therapeutic agents by considering their metabolism in the body and their ability to access the brain via the blood brain barrier. Finally, we discuss future areas of study which are necessary before dietary flavonoids can be established as therapeutic agents against neuroinflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G protein-coupled receptor kinases (GRKs) are regulatory enzymes involved in the modulation of seven-transmembrane-helix receptors. In order to develop specific inhibitors for these kinases, we synthesized and investigated peptide inhibitors derived from the sequence of the first intracellular loop of the beta(2)-adrenergic receptor. Introduction of changes in the sequence and truncation of N- and C-terminal amino acids increased the inhibitory potency by a factor of 40. These inhibitors not only inhibited the prototypical GRK2 but also GRK3 and GRK5. In contrast there was no inhibition of protein kinase C and protein kinase A even at the highest concentration tested. The peptide with the sequence AKFERLQTVTNYFITSE inhibited GRK2 with an IC50 of 0.6 mu M, GRK3 with 2.6 mu M and GRK5 with 1.6 mu M. The peptide inhibitors were non-competitive for receptor and ATP. These findings demonstrate that specific peptides can inhibit GRKs in the submicromolar range and suggest that a further decrease in size is possible without losing the inhibitory potency. (c) 2005 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence to suggest neuroinflammatory processes contribute to the cascade of events that lead to the progressive neuronal damage observed in neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease. The molecular mechanisms underlying such neurodegenerative processes are rather complex and involve modulation of the mitogen-activated protein kinase (MAPK) and NF-κB pathways leading to the generation of nitric oxide (NO). Such a small molecule may diffuse to the neighbouring neurons and trigger neuronal death through the inhibition of mitochondrial respiration and increases in the reactive oxygen and nitrogen species. Recently, attention has focused on the neuroprotective effects of flavonoids which have been effective in protecting against both age-related cognitive and motor decline in vivo. Although, the precise mechanisms by which flavonoids may exert their neuroprotective effects remain unclear, accumulating evidence suggest that they may exert their neuroprotective effects through the modulation of the MAP Kinase and PI3 Kinase signaling pathways. The aim of the present chapter is to highlight the potential neuroprotective role of dietary flavonoids in terms of their ability to modulate neuroinflammation in the central nervous system. We will provide an outline of the role glial cells play in neuroinflammation and describe the involvement of inflammatory mediators, produced by glia, in the cascade of events leading to neuronal degeneration. We will then present the evidence that flavonoids may modulate neuroinflammation by inhibiting the production of these inflammatory agents and summarise their potential mechanisms of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The canonical pathway of regulation of the germinal centre kinase (GCK) III subgroup member, mammalian Sterile20-related kinase 3 (MST3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr178-), induction of Ser-/Thr-protein kinase activity and nuclear localisation. We identified an alternative ‘non-canonical’ pathway of MST3 activation (regulated primarily through dephosphorylation) which may also be applicable to other GCKIII (and GCKVI) subgroup members. In the basal state, inactive MST3 co-immunoprecipitated with the Golgi protein, GOLGA2/gm130. Activation of MST3 by calyculin A (a protein Ser-/Thr- phosphatase 1/2A inhibitor) stimulated (auto)phosphorylation of MST3(Thr178-) in the catalytic domain with essentially simultaneous cis-autophosphorylation of MST3(Thr328-) in the regulatory domain, an event also requiring the MST3(341-376) sequence which acts as a putative docking domain. MST3(Thr178-) phosphorylation increased MST3 kinase activity but this activity was independent of MST3(Thr328-) phosphorylation. Interestingly, MST3(Thr328-) lies immediately C-terminal to a STRAD pseudokinase-like site recently identified as being involved in binding of GCKIII/GCKVI members to MO25 scaffolding proteins. MST3(Thr178- /Thr328-) phosphorylation was concurrent with dissociation of MST3 from GOLGA2/gm130 and association of MST3 with MO25, and MST3(Thr328-) phosphorylation was necessary for formation of the activated MST3-MO25 holocomplex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a short communication in this issue (Manser et al. 2012), Christopher Miller’s group at the Institute of Psychiatry, King’s College London present an elegant and convincing set of experiments using molecular techniques to show that a brain-enriched membrane-associated protein kinase, lemur tyrosine kinase-2 (LMTK2), is directly phosphorylated by the cyclin-dependent kinase-5/p35 and this event is sufficient for LMTK2 to phosphorylate an abundant protein phosphatase, PP1C. LMTK2 has been little studied to date and, despite its name, is a kinase which phosphorylates serine or threonine residues of protein substrates. The paper adds to the evidence that this enzyme is a potentially important mediator positioned to integrate a number of intracellular signalling pathways relevant to neurodegeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of Parkinson's disease (PD). LRRK2 contains a Ras of complex proteins (ROC) domain that may act as a GTPase to regulate its protein kinase activity. The structure of ROC and the mechanism(s) by which it regulates kinase activity are not known. Here, we report the crystal structure of the LRRK2 ROC domain in complex with GDP-Mg2+ at 2.0-Å resolution. The structure displays a dimeric fold generated by extensive domain-swapping, resulting in a pair of active sites constructed with essential functional groups contributed from both monomers. Two PD-associated pathogenic residues, R1441 and I1371, are located at the interface of two monomers and provide exquisite interactions to stabilize the ROC dimer. The structure demonstrates that loss of stabilizing forces in the ROC dimer is likely related to decreased GTPase activity resulting from mutations at these sites. Our data suggest that the ROC domain may regulate LRRK2 kinase activity as a dimer, possibly via the C-terminal of ROC (COR) domain as a molecular hinge. The structure of the LRRK2 ROC domain also represents a signature from a previously undescribed class of GTPases from complex proteins and results may provide a unique molecular target for therapeutics in PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuropeptide signaling at the cell surface is regulated by metalloendopeptidases, which degrade peptides in the extracellular fluid, and beta-arrestins, which interact with G protein-coupled receptors (GPCRs) to mediate desensitization. beta-Arrestins also recruit GPCRs and mitogen-activated protein kinases to endosomes to allow internalized receptors to continue signaling, but the mechanisms regulating endosomal signaling are unknown. We report that endothelin-converting enzyme-1 (ECE-1) degrades substance P (SP) in early endosomes of epithelial cells and neurons to destabilize the endosomal mitogen-activated protein kinase signalosome and terminate signaling. ECE-1 inhibition caused endosomal retention of the SP neurokinin 1 receptor, beta-arrestins, and Src, resulting in markedly sustained ERK2 activation in the cytosol and nucleus, whereas ECE-1 overexpression attenuated ERK2 activation. ECE-1 inhibition also enhanced SP-induced expression and phosphorylation of the nuclear death receptor Nur77, resulting in cell death. Thus, endosomal ECE-1 attenuates ERK2-mediated SP signaling in the nucleus to prevent cell death. We propose that agonist availability in endosomes, here regulated by ECE-1, controls beta-arrestin-dependent signaling of endocytosed GPCRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory proteases (mast cell tryptase and trypsins) cleave protease-activated receptor 2 (PAR2) on spinal afferent neurons and cause persistent inflammation and hyperalgesia by unknown mechanisms. We determined whether transient receptor potential vanilloid receptor 1 (TRPV1), a cation channel activated by capsaicin, protons, and noxious heat, mediates PAR2-induced hyperalgesia. PAR2 was coexpressed with TRPV1 in small- to medium-diameter neurons of the dorsal root ganglia (DRG), as determined by immunofluorescence. PAR2 agonists increased intracellular [Ca2+] ([Ca2+]i) in these neurons in culture, and PAR2-responsive neurons also responded to the TRPV1 agonist capsaicin, confirming coexpression of PAR2 and TRPV1. PAR2 agonists potentiated capsaicin-induced increases in [Ca2+]i in TRPV1-transfected human embryonic kidney (HEK) cells and DRG neurons and potentiated capsaicin-induced currents in DRG neurons. Inhibitors of phospholipase C and protein kinase C (PKC) suppressed PAR2-induced sensitization of TRPV1-mediated changes in [Ca2+]i and TRPV1 currents. Activation of PAR2 or PKC induced phosphorylation of TRPV1 in HEK cells, suggesting a direct regulation of the channel. Intraplantar injection of a PAR2 agonist caused persistent thermal hyperalgesia that was prevented by antagonism or deletion of TRPV1. Coinjection of nonhyperalgesic doses of PAR2 agonist and capsaicin induced hyperalgesia that was inhibited by deletion of TRPV1 or antagonism of PKC. PAR2 activation also potentiated capsaicin-induced release of substance P and calcitonin gene-related peptide from superfused segments of the dorsal horn of the spinal cord, where they mediate hyperalgesia. We have identified a novel mechanism by which proteases that activate PAR2 sensitize TRPV1 through PKC. Antagonism of PAR2, TRPV1, or PKC may abrogate protease-induced thermal hyperalgesia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GCKIII (germinal centre kinase III) subfamily of the mammalian Ste20 (sterile 20)-like group of serine/threonine protein kinases comprises SOK1 (Ste20-like/oxidant-stressresponse kinase 1), MST3 (mammalian Ste20-like kinase 3) and MST4. Initially, GCKIIIs were considered in the contexts of the regulation of mitogen-activated protein kinase cascades and apoptosis. More recently, their participation in multiprotein heterocomplexes has become apparent. In the present review, we discuss the structure and phosphorylation of GCKIIIs and then focus on their interactions with other proteins. GCKIIIs possess a highly-conserved, structured catalytic domain at the N-terminus and a less-well conserved C-terminal regulatory domain. GCKIIIs are activated by tonic autophosphorylation of a T-loop threonine residue and their phosphorylation is regulated primarily through protein serine/threonine phosphatases [especially PP2A (protein phosphatase 2A)]. The GCKIII regulatory domains are highly disorganized, but can interact with more structured proteins, particularly the CCM3 (cerebral cavernous malformation 3)/PDCD10 (programmed cell death 10) protein. We explore the role(s) of GCKIIIs (and CCM3/PDCD10) in STRIPAK (striatin-interacting phosphatase and kinase) complexes and their association with the cis-Golgi protein GOLGA2 (golgin A2; GM130). Recently, an interaction of GCKIIIs with MO25 has been identified. This exhibits similarities to the STRADα (STE20-related kinase adaptor α)–MO25 interaction (as in the LKB1–STRADα–MO25 heterotrimer) and, at least for MST3, the interaction may be enhanced by cis-autophosphorylation of its regulatory domain. In these various heterocomplexes, GCKIIIs associate with the Golgi apparatus, the centrosome and the nucleus, as well as with focal adhesions and cell junctions, and are probably involved in cell migration, polarity and proliferation. Finally, we consider the association of GCKIIIs with a number of human diseases, particularly cerebral cavernous malformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) infection results in the activation of numerous stress responses including oxidative stress, with the potential to induce an apoptotic state. Previously we have shown that HCV attenuates the stress-induced, p38MAPK-mediated up-regulation of the K+ channel Kv2.1, to maintain the survival of infected cells in the face of cellular stress. We demonstrated that this effect was mediated by HCV non-structural 5A (NS5A) protein, which impaired p38MAPK activity through a polyproline motif dependent interaction, resulting in reduction of phosphorylation activation of Kv2.1. In this study, we investigated the host cell proteins targeted by NS5A in order to mediate Kv2.1 inhibition. We screened a phage-display library expressing the entire complement of human SH3 domains for novel NS5A-host cell interactions. This analysis identified mixed lineage kinase 3 (MLK3) as a putative NS5A interacting partner. MLK3 is a serine/threonine protein kinase that is a member of the MAPK kinase kinase (MAP3K) family and activates p38MAPK. An NS5A-MLK3 interaction was confirmed by co-immunoprecipitation and western blot analysis. We further demonstrate a novel role of MLK3 in the modulation of Kv2.1 activity, whereby MLK3 overexpression leads to the up-regulation of channel activity. Accordingly, coexpression of NS5A suppressed this stimulation. Additionally we demonstrate that overexpression of MLK3 induced apoptosis which was also counteracted by NS5A. We conclude that NS5A targets MLK3 with multiple downstream consequences for both apoptosis and K+ homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human ROCO proteins are a family of multi-domain proteins sharing a conserved ROC-COR supra-domain. The family has four members: leu- cine-rich repeat kinase 1 (LRRK1), leucine-rich repeat kinase 2 (LRRK2), death-associated protein kinase 1 (DAPK1) and malignant fibrous histiocy- toma amplified sequences with leucine-rich tandem repeats 1 (MASL1). Previous studies of LRRK1/2 and DAPK1 have shown that the ROC (Ras of complex proteins) domain can bind and hydrolyse GTP, but the cellular consequences of this activity are still unclear. Here, the first biochemical characterization of MASL1 and the impact of GTP binding on MASL1 complex formation are reported. The results demonstrate that MASL1, similar to other ROCO proteins, can bind guanosine nucleotides via its ROC domain. Furthermore, MASL1 exists in two distinct cellular com- plexes associated with heat shock protein 60, and the formation of a low molecular weight pool of MASL1 is modulated by GTP binding. Finally, loss of GTP enhances MASL1 toxicity in cells. Taken together, these data point to a central role for the ROC/GTPase domain of MASL1 in the reg- ulation of its cellular function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Increasing evidence suggests that individual isoforms of protein kinase C (PKC) play distinct roles in regulating platelet activation. Methodology/Principal Findings In this study, we focus on the role of two novel PKC isoforms, PKCδ and PKCε, in both mouse and human platelets. PKCδ is robustly expressed in human platelets and undergoes transient tyrosine phosphorylation upon stimulation by thrombin or the collagen receptor, GPVI, which becomes sustained in the presence of the pan-PKC inhibitor, Ro 31-8220. In mouse platelets, however, PKCδ undergoes sustained tyrosine phosphorylation upon activation. In contrast the related isoform, PKCε, is expressed at high levels in mouse but not human platelets. There is a marked inhibition in aggregation and dense granule secretion to low concentrations of GPVI agonists in mouse platelets lacking PKCε in contrast to a minor inhibition in response to G protein-coupled receptor agonists. This reduction is mediated by inhibition of tyrosine phosphorylation of the FcRγ-chain and downstream proteins, an effect also observed in wild-type mouse platelets in the presence of a PKC inhibitor. Conclusions These results demonstrate a reciprocal relationship in levels of the novel PKC isoforms δ and ε in human and mouse platelets and a selective role for PKCε in signalling through GPVI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Stress-regulated" mitogen-activated protein kinases (SR-MAPKs) comprise the stress-activated protein kinases (SAPKs)/c-Jun N-terminal kinases (JNKs) and the p38-MAPKs. In the perfused heart, ischemia/reperfusion activates SR-MAPKs. Although the agent(s) directly responsible is unclear, reactive oxygen species are generated during ischemia/reperfusion. We have assessed the ability of oxidative stress (as exemplified by H2O2) to activate SR-MAPKs in the perfused heart and compared it with the effect of ischemia/reperfusion. H2O2 activated both SAPKs/JNKs and p38-MAPK. Maximal activation by H2O2 in both cases was observed at 0.5 mM. Whereas activation of p38-MAPK by H2O2 was comparable to that of ischemia and ischemia/reperfusion, activation of the SAPKs/JNKs was less than that of ischemia/reperfusion. As with ischemia/reperfusion, there was minimal activation of the ERK MAPK subfamily by H2O2. MAPK-activated protein kinase 2 (MAPKAPK2), a downstream substrate of p38-MAPKs, was activated by H2O2 to a similar extent as with ischemia or ischemia/reperfusion. In all instances, activation of MAPKAPK2 in perfused hearts was inhibited by SB203580, an inhibitor of p38-MAPKs. Perfusion of hearts at high aortic pressure (20 kilopascals) also activated the SR-MAPKs and MAPKAPK2. Free radical trapping agents (dimethyl sulfoxide and N-t-butyl-alpha-phenyl nitrone) inhibited the activation of SR-MAPKs and MAPKAPK2 by ischemia/reperfusion. These data are consistent with a role for reactive oxygen species in the activation of SR-MAPKs during ischemia/reperfusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the ability of phenylephrine (PE), an alpha-adrenergic agonist and promoter of hypertrophic growth in the ventricular myocyte, to activate the three best-characterized mitogen-activated protein kinase (MAPK) subfamilies, namely p38-MAPKs, SAPKs/JNKs (i.e. stress-activated protein kinases/c-Jun N-terminal kinases) and ERKs (extracellularly responsive kinases), in perfused contracting rat hearts. Perfusion of hearts with 100 microM PE caused a rapid (maximal at 10 min) 12-fold activation of two p38-MAPK isoforms, as measured by subsequent phosphorylation of a p38-MAPK substrate, recombinant MAPK-activated protein kinase 2 (MAPKAPK2). This activation coincided with phosphorylation of p38-MAPK. Endogenous MAPKAPK2 was activated 4-5-fold in these perfusions and this was inhibited completely by the p38-MAPK inhibitor, SB203580 (10 microM). Activation of p38-MAPK and MAPKAPK2 was also detected in non-contracting hearts perfused with PE, indicating that the effects were not dependent on the positive inotropic/chronotropic properties of the agonist. Although SAPKs/JNKs were also rapidly activated, the activation (2-3-fold) was less than that of p38-MAPK. The ERKs were activated by perfusion with PE and the activation was at least 50% of that seen with 1 microM PMA, the most powerful activator of the ERKs yet identified in cardiac myocytes. These results indicate that, in addition to the ERKs, two MAPK subfamilies, whose activation is more usually associated with cellular stresses, are activated by the Gq/11-protein-coupled receptor (Gq/11PCR) agonist, PE, in whole hearts. These data indicate that Gq/11PCR agonists activate multiple MAPK signalling pathways in the heart, all of which may contribute to the overall response (e.g. the development of the hypertrophic phenotype).