163 resultados para political opportunities
Resumo:
The Arctic has undergone substantial changes over the last few decades in various cryospheric and derivative systems and processes. Of these, the Arctic sea ice regime has seen some of the most rapid change and is one of the most visible markers of Arctic change outside the scientific community. This has drawn considerable attention not only from the natural sciences, but increasingly, from the political and commercial sectors as they begin to grapple with the problems and opportunities that are being presented. The possible impacts of past and projected changes in Arctic sea ice, especially as it relates to climatic response, are of particular interest and have been the subject of increasing research activity. A review of the current knowledge of the role of sea ice in the climate system is therefore timely. We present a review that examines both the current state of understanding, as regards the impacts of sea-ice loss observed to date, and climate model projections, to highlight hypothesised future changes and impacts on storm tracks and the North Atlantic Oscillation. Within the broad climate-system perspective, the topics of storminess and large-scale variability will be specifically considered. We then consider larger-scale impacts on the climatic system by reviewing studies that have focused on the interaction between sea-ice extent and the North Atlantic Oscillation. Finally, an overview of the representation of these topics in the literature in the context of IPCC climate projections is presented. While most agree on the direction of Arctic sea-ice change, the rates amongst the various projections vary greatly. Similarly, the response of storm tracks and climate variability are uncertain, exacerbated possibly by the influence of other factors. A variety of scientific papers on the relationship between sea-ice changes and atmospheric variability have brought to light important aspects of this complex topic. Examples are an overall reduction in the number of Arctic winter storms, a northward shift of mid-latitude winter storms in the Pacific and a delayed negative NAO-like response in autumn/winter to a reduced Arctic sea-ice cover (at least in some months). This review paper discusses this research and the disagreements, bringing about a fresh perspective on this issue.
Resumo:
Landscape restoration has the potential to mitigate habitat loss and fragmentation. However, restoration can take decades to reach the ecological conditions of the target habitats. The National Trust’s Stonehenge Landscape Restoration Project provides an opportunity to evaluate the ecological benefits against the economic and temporal costs. A field survey between June and September 2010 using Lepidoptera as bio-indicators showed that restored grasslands can approach the ecological conditions of the target chalk grassland habitat within 10 years. However, specialist species like Lysandra bellargus (Adonis blue) were absent from restored grasslands and may require additional management to assist their colonisation. Analysis of the Lepidoptera communities showed that both small-scale habitat heterogeneity and age of the habitat were important for explaining Lepidoptera occurrence. These results demonstrate that habitat restoration at the landscape scale combined with appropriate site-scale management can be a relatively rapid and effective method to restore ecological networks and buffer against future climate change.