76 resultados para permanent-magnet synchronous machine
Resumo:
Deception-detection is the crux of Turing’s experiment to examine machine thinking conveyed through a capacity to respond with sustained and satisfactory answers to unrestricted questions put by a human interrogator. However, in 60 years to the month since the publication of Computing Machinery and Intelligence little agreement exists for a canonical format for Turing’s textual game of imitation, deception and machine intelligence. This research raises from the trapped mine of philosophical claims, counter-claims and rebuttals Turing’s own distinct five minutes question-answer imitation game, which he envisioned practicalised in two different ways: a) A two-participant, interrogator-witness viva voce, b) A three-participant, comparison of a machine with a human both questioned simultaneously by a human interrogator. Using Loebner’s 18th Prize for Artificial Intelligence contest, and Colby et al.’s 1972 transcript analysis paradigm, this research practicalised Turing’s imitation game with over 400 human participants and 13 machines across three original experiments. Results show that, at the current state of technology, a deception rate of 8.33% was achieved by machines in 60 human-machine simultaneous comparison tests. Results also show more than 1 in 3 Reviewers succumbed to hidden interlocutor misidentification after reading transcripts from experiment 2. Deception-detection is essential to uncover the increasing number of malfeasant programmes, such as CyberLover, developed to steal identity and financially defraud users in chatrooms across the Internet. Practicalising Turing’s two tests can assist in understanding natural dialogue and mitigate the risk from cybercrime.
Resumo:
We analyze four years of transaction data for euro-area sovereign bonds traded on the MTS electronic platforms. In order to measure the informational content of trading activity, we estimate the permanent price response to trades. We find not only strong evidence of information asymmetry in sovereign bond markets, but we also show the relevance of information asymmetry in explaining the cross-sectional variations of bond yields across a wide range of bond maturities and countries. Our results confirm that trades of more recently issued bonds and longer maturity bonds have a greater permanent effect on prices. We compare the price impact of trades for bonds across different maturity categories and find that trades of French and German bonds have the highest long-term price impact in the short maturity class whereas trades of German bonds have the highest permanent price impacts in the long maturity class. More importantly, we study the cross-section of bond yields and find that after controlling for conventional factors, investors demand higher yields for bonds with larger permanent trading impact. Interestingly, when investors face increased market uncertainty, they require even higher compensation for information asymmetry.
Resumo:
In this paper a look is taken at how the use of implant and electrode technology can be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking a biological brain directly with computer technology. The emphasis is placed on practical scientific studies that have been and are being undertaken and reported on. The area of focus is the use of electrode technology, where either a connection is made directly with the cerebral cortex and/or nervous system or where implants into the human body are involved. The paper also considers robots that have biological brains in which human neurons can be employed as the sole thinking machine for a real world robot body.
Resumo:
In this paper a support vector machine (SVM) approach for characterizing the feasible parameter set (FPS) in non-linear set-membership estimation problems is presented. It iteratively solves a regression problem from which an approximation of the boundary of the FPS can be determined. To guarantee convergence to the boundary the procedure includes a no-derivative line search and for an appropriate coverage of points on the FPS boundary it is suggested to start with a sequential box pavement procedure. The SVM approach is illustrated on a simple sine and exponential model with two parameters and an agro-forestry simulation model.
Resumo:
In this paper we consider transcripts which originated from a practical series of Turing’s Imitation Game which was held on 23rd June 2012 at Bletchley Park, England. In some cases the tests involved a 3-participant simultaneous comparison of two hidden entities whereas others were the result of a direct 2-participant interaction. Each of the transcripts considered here resulted in a human interrogator being fooled, by a machine, into concluding that they had been conversing with a human. Particular features of the conversation are highlighted, successful ploys on the part of each machine discussed and likely reasons for the interrogator being fooled are considered. Subsequent feedback from the interrogators involved is also included
Resumo:
This thesis describes a form of non-contact measurement using two dimensional hall effect sensing to resolve the location of a moving magnet which is part of a ‘magnetic spring’ type suspension system. This work was inspired by the field of Space Robotics, which currently relies on solid link suspension techniques for rover stability. This thesis details the design, development and testing of a novel magnetic suspension system with a possible application in space and terrestrial based robotics, especially when the robot needs to traverse rough terrain. A number of algorithms were developed, to utilize experimental data from testing, that can approximate the separation between magnets in the suspension module through observation of the magnetic fields. Experimental hardware was also developed to demonstrate how two dimensional hall effect sensor arrays could provide accurate feedback, with respects to the magnetic suspension modules operation, so that future work can include the sensor array in a real-time control system to produce dynamic ride control for space robots. The research performed has proven that two dimensional hall effect sensing with respects to magnetic suspension is accurate, effective and suitable for future testing.
Resumo:
Understanding how and why the capability of one set of business resources, its structural arrangements and mechanisms compared to another works can provide competitive advantage in terms of new business processes and product and service development. However, most business models of capability are descriptive and lack formal modelling language to qualitatively and quantifiably compare capabilities, Gibson’s theory of affordance, the potential for action, provides a formal basis for a more robust and quantitative model, but most formal affordance models are complex and abstract and lack support for real-world applications. We aim to understand the ‘how’ and ‘why’ of business capability, by developing a quantitative and qualitative model that underpins earlier work on Capability-Affordance Modelling – CAM. This paper integrates an affordance based capability model and the formalism of Coloured Petri Nets to develop a simulation model. Using the model, we show how capability depends on the space time path of interacting resources, the mechanism of transition and specific critical affordance factors relating to the values of the variables for resources, people and physical objects. We show how the model can identify the capabilities of resources to enable the capability to inject a drug and anaesthetise a patient.
Resumo:
This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets.
Resumo:
We extend extreme learning machine (ELM) classifiers to complex Reproducing Kernel Hilbert Spaces (RKHS) where the input/output variables as well as the optimization variables are complex-valued. A new family of classifiers, called complex-valued ELM (CELM) suitable for complex-valued multiple-input–multiple-output processing is introduced. In the proposed method, the associated Lagrangian is computed using induced RKHS kernels, adopting a Wirtinger calculus approach formulated as a constrained optimization problem similarly to the conventional ELM classifier formulation. When training the CELM, the Karush–Khun–Tuker (KKT) theorem is used to solve the dual optimization problem that consists of satisfying simultaneously smallest training error as well as smallest norm of output weights criteria. The proposed formulation also addresses aspects of quaternary classification within a Clifford algebra context. For 2D complex-valued inputs, user-defined complex-coupled hyper-planes divide the classifier input space into four partitions. For 3D complex-valued inputs, the formulation generates three pairs of complex-coupled hyper-planes through orthogonal projections. The six hyper-planes then divide the 3D space into eight partitions. It is shown that the CELM problem formulation is equivalent to solving six real-valued ELM tasks, which are induced by projecting the chosen complex kernel across the different user-defined coordinate planes. A classification example of powdered samples on the basis of their terahertz spectral signatures is used to demonstrate the advantages of the CELM classifiers compared to their SVM counterparts. The proposed classifiers retain the advantages of their ELM counterparts, in that they can perform multiclass classification with lower computational complexity than SVM classifiers. Furthermore, because of their ability to perform classification tasks fast, the proposed formulations are of interest to real-time applications.