76 resultados para pacs: geography and cartography computing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive methods which “equidistribute” a given positive weight function are now used fairly widely for selecting discrete meshes. The disadvantage of such schemes is that the resulting mesh may not be smoothly varying. In this paper a technique is developed for equidistributing a function subject to constraints on the ratios of adjacent steps in the mesh. Given a weight function $f \geqq 0$ on an interval $[a,b]$ and constants $c$ and $K$, the method produces a mesh with points $x_0 = a,x_{j + 1} = x_j + h_j ,j = 0,1, \cdots ,n - 1$ and $x_n = b$ such that\[ \int_{xj}^{x_{j + 1} } {f \leqq c\quad {\text{and}}\quad \frac{1} {K}} \leqq \frac{{h_{j + 1} }} {{h_j }} \leqq K\quad {\text{for}}\, j = 0,1, \cdots ,n - 1 . \] A theoretical analysis of the procedure is presented, and numerical algorithms for implementing the method are given. Examples show that the procedure is effective in practice. Other types of constraints on equidistributing meshes are also discussed. The principal application of the procedure is to the solution of boundary value problems, where the weight function is generally some error indicator, and accuracy and convergence properties may depend on the smoothness of the mesh. Other practical applications include the regrading of statistical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the linear equality-constrained least squares problem (LSE) of minimizing ${\|c - Gx\|}_2 $, subject to the constraint $Ex = p$. A preconditioned conjugate gradient method is applied to the Kuhn–Tucker equations associated with the LSE problem. We show that our method is well suited for structural optimization problems in reliability analysis and optimal design. Numerical tests are performed on an Alliant FX/8 multiprocessor and a Cray-X-MP using some practical structural analysis data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods for producing nonuniform transformations, or regradings, of discrete data are discussed. The transformations are useful in image processing, principally for enhancement and normalization of scenes. Regradings which “equidistribute” the histogram of the data, that is, which transform it into a constant function, are determined. Techniques for smoothing the regrading, dependent upon a continuously variable parameter, are presented. Generalized methods for constructing regradings such that the histogram of the data is transformed into any prescribed function are also discussed. Numerical algorithms for implementing the procedures and applications to specific examples are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The K-Means algorithm for cluster analysis is one of the most influential and popular data mining methods. Its straightforward parallel formulation is well suited for distributed memory systems with reliable interconnection networks, such as massively parallel processors and clusters of workstations. However, in large-scale geographically distributed systems the straightforward parallel algorithm can be rendered useless by a single communication failure or high latency in communication paths. The lack of scalable and fault tolerant global communication and synchronisation methods in large-scale systems has hindered the adoption of the K-Means algorithm for applications in large networked systems such as wireless sensor networks, peer-to-peer systems and mobile ad hoc networks. This work proposes a fully distributed K-Means algorithm (EpidemicK-Means) which does not require global communication and is intrinsically fault tolerant. The proposed distributed K-Means algorithm provides a clustering solution which can approximate the solution of an ideal centralised algorithm over the aggregated data as closely as desired. A comparative performance analysis is carried out against the state of the art sampling methods and shows that the proposed method overcomes the limitations of the sampling-based approaches for skewed clusters distributions. The experimental analysis confirms that the proposed algorithm is very accurate and fault tolerant under unreliable network conditions (message loss and node failures) and is suitable for asynchronous networks of very large and extreme scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Twitter network has been labelled the most commonly used microblogging application around today. With about 500 million estimated registered users as of June, 2012, Twitter has become a credible medium of sentiment/opinion expression. It is also a notable medium for information dissemination; including breaking news on diverse issues since it was launched in 2007. Many organisations, individuals and even government bodies follow activities on the network in order to obtain knowledge on how their audience reacts to tweets that affect them. We can use postings on Twitter (known as tweets) to analyse patterns associated with events by detecting the dynamics of the tweets. A common way of labelling a tweet is by including a number of hashtags that describe its contents. Association Rule Mining can find the likelihood of co-occurrence of hashtags. In this paper, we propose the use of temporal Association Rule Mining to detect rule dynamics, and consequently dynamics of tweets. We coined our methodology Transaction-based Rule Change Mining (TRCM). A number of patterns are identifiable in these rule dynamics including, new rules, emerging rules, unexpected rules and ?dead' rules. Also the linkage between the different types of rule dynamics is investigated experimentally in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid multiprocessor architectures which combine re-configurable computing and multiprocessors on a chip are being proposed to transcend the performance of standard multi-core parallel systems. Both fine-grained and coarse-grained parallel algorithm implementations are feasible in such hybrid frameworks. A compositional strategy for designing fine-grained multi-phase regular processor arrays to target hybrid architectures is presented in this paper. The method is based on deriving component designs using classical regular array techniques and composing the components into a unified global design. Effective designs with phase-changes and data routing at run-time are characteristics of these designs. In order to describe the data transfer between phases, the concept of communication domain is introduced so that the producer–consumer relationship arising from multi-phase computation can be treated in a unified way as a data routing phase. This technique is applied to derive new designs of multi-phase regular arrays with different dataflow between phases of computation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most developers of behavior change support systems (BCSS) employ ad hoc procedures in their designs. This paper presents a novel discussion concerning how analyzing the relationship between attitude toward target behavior, current behavior, and attitude toward change or maintaining behavior can facilitate the design of BCSS. We describe the three-dimensional relationships between attitude and behavior (3D-RAB) model and demonstrate how it can be used to categorize users, based on variations in levels of cognitive dissonance. The proposed model seeks to provide a method for analyzing the user context on the persuasive systems design model, and it is evaluated using existing BCSS. We identified that although designers seem to address the various cognitive states, this is not done purposefully, or in a methodical fashion, which implies that many existing applications are targeting users not considered at the design phase. As a result of this work, it is suggested that designers apply the 3D-RAB model in order to design solutions for targeted users.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method for the recognition of complex actions. Our method combines automatic learning of simple actions and manual definition of complex actions in a single grammar. Contrary to the general trend in complex action recognition that consists in dividing recognition into two stages, our method performs recognition of simple and complex actions in a unified way. This is performed by encoding simple action HMMs within the stochastic grammar that models complex actions. This unified approach enables a more effective influence of the higher activity layers into the recognition of simple actions which leads to a substantial improvement in the classification of complex actions. We consider the recognition of complex actions based on person transits between areas in the scene. As input, our method receives crossings of tracks along a set of zones which are derived using unsupervised learning of the movement patterns of the objects in the scene. We evaluate our method on a large dataset showing normal, suspicious and threat behaviour on a parking lot. Experiments show an improvement of ~ 30% in the recognition of both high-level scenarios and their composing simple actions with respect to a two-stage approach. Experiments with synthetic noise simulating the most common tracking failures show that our method only experiences a limited decrease in performance when moderate amounts of noise are added.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The field of museum geography is taking on new significance as geographers and museum-studies scholars make sense of the spatial relations between the people, things, practices and buildings that make and remake museums. In order to strengthen this spatial interest in museums, this paper makes important connections between recent work in cultural geography and museum studies on love, materiality and the museum effect. This paper marks a departure from the preoccupation with the public spaces of museums to go behind the scenes of the Science Museum in London to explore its rarely visited, but nonetheless lively, small-to-medium-sized object storerooms at Blythe House. Incorporating field diary entries and interview extracts from two research projects based upon the museum storerooms at Blythe House, this paper brings to life the social interactions that take place between museum curators and conservators and the objects they care for. This focus on object-love enables scholars to consider anew what museums are and what they are for, the life of the museum object in the storeroom, and the emotional practices of professional curatorship and conservation. This journey into the storeroom at Blythe House makes explicit how object-love shapes museum space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research evaluating perceptual responses to music has identified many structural features as correlates that might be incorporated in computer music systems for affectively charged algorithmic composition and/or expressive music performance. In order to investigate the possible integration of isolated musical features to such a system, a discrete feature known to correlate some with emotional responses – rhythmic density – was selected from a literature review and incorporated into a prototype system. This system produces variation in rhythm density via a transformative process. A stimulus set created using this system was then subjected to a perceptual evaluation. Pairwise comparisons were used to scale differences between 48 stimuli. Listener responses were analysed with Multidimensional scaling (MDS). The 2-Dimensional solution was then rotated to place the stimuli with the largest range of variation across the horizontal plane. Stimuli with variation in rhythmic density were placed further from the source material than stimuli that were generated by random permutation. This, combined with the striking similarity between the MDS scaling and that of the 2-dimensional emotional model used by some affective algorithmic composition systems, suggests that isolated musical feature manipulation can now be used to parametrically control affectively charged automated composition in a larger system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile devices can enhance undergraduate research projects and students’ research capabilities. The use of mobile devices such as tablet computers will not automatically make undergraduates better researchers, but their use should make investigations, writing, and publishing more effective and may even save students time. We have explored some of the possibilities of using “tablets” and “smartphones” to aid the research and inquiry process in geography and bioscience fieldwork. We provide two case studies as illustration of how students working in small research groups use mobile devices to gather and analyze primary data in field-based inquiry. Since April 2010, Apple’s iPad has changed the way people behave in the digital world and how they access their music, watch videos, or read their email much as the entrepreneurs Steve Jobs and Jonathan Ive intended. Now with “apps” and “the cloud” and the ubiquitous references to them appearing in the press and on TV, academics’ use of tablets is also having an impact on education and research. In our discussion we will refer to use of smartphones such as the iPhone, iPod, and Android devices under the term “tablet”. Android and Microsoft devices may not offer the same facilities as the iPad/iphone, but many app producers now provide versions for several operating systems. Smartphones are becoming more affordable and ubiquitous (Melhuish and Falloon 2010), but a recent study of undergraduate students (Woodcock et al. 2012, 1) found that many students who own smartphones are “largely unaware of their potential to support learning”. Importantly, however, students were found to be “interested in and open to the potential as they become familiar with the possibilities” (Woodcock et al. 2012). Smartphones and iPads could be better utilized than laptops when conducting research in the field because of their portability (Welsh and France 2012). It is imperative for faculty to provide their students with opportunities to discover and employ the potential uses of mobile devices in their learning. However, it is not only the convenience of the iPad or tablet devices or smartphones we wish to promote, but also a way of thinking and behaving digitally. We essentially suggest that making a tablet the center of research increases the connections between related research activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the Paris Peace Conferences of 1918-1919, new states aspiring to be nation-states were created for 60 million people, but at the same time 25 million people found themselves as ethnic minorities. This change of the old order in Europe had a considerable impact on one such group, more than 3 million Bohemian German-speakers, later referred to as Sudeten Germans. After the demise of the Habsburg Empire In 1918, they became part of the new state of Czechoslovakia. In 1938, the Munich Agreement – prelude to the Second World War – integrated them into Hitler’s Reich; in 1945-1946 they were expelled from the reconstituted state of Czechoslovakia. At the centre of this War Child case study are German children from the Northern Bohemian town and district, formerly known as Gablonz an der Neisse, famous for exquisite glass art, now Jablonec nad Nisou in the Czech Republic. After their expulsion they found new homes in the post-war Federal Republic of Germany. In addition, testimonies have been drawn upon of some Czech eyewitnesses from the same area, who provided their perspective from the other side, as it were. It turned out to be an insightful case study of the fate of these communities, previously studied mainly within the context of the national struggle between Germans and Czechs. The inter-disciplinary research methodology adopted here combines history and sociological research to demonstrate the effect of larger political and social developments on human lives, not shying away from addressing sensitive political and historical issues, as far as these are relevant within the context of the study. The expellees started new lives in what became Neugablonz in post-war Bavaria where they successfully re-established the industries they had had to leave behind in 1945-1946. Part 1 of the study sheds light on the complex Czech-German relationship of this important Central European region, addressing issues of democracy, ethnicity, race, nationalism, geopolitics, economics, human geography and ethnography. It also charts the developments leading to the expulsion of the Sudeten Germans from Czechoslovakia after 1945. What is important in this War Child study is how the expellees remember their history while living as children in Sudetenland and later. The testimony data gained indicate that certain stereotypes often repeated within the context of Sudeten issues such as the confrontational nature of inter-ethnic relations are not reflected in the testimonies of the respondents from Gablonz. In Part 2 the War Child Study explores the memories of the former Sudeten war children using sociological research methods. It focuses on how they remember life in their Bohemian homeland and coped with the life-long effects of displacement after their expulsion. The study maps how they turned adversity into success by showing a remarkable degree of resilience and ingenuity in the face of testing circumstances due to the abrupt break in their lives. The thesis examines the reasons for the relatively positive outcome to respondents’ lives and what transferable lessons can be deduced from the results of this study.