172 resultados para numerical calculation
Resumo:
This paper discusses the architectural design, implementation and associated simulated peformance results of a possible receiver solution fir a multiband Ultra-Wideband (UWB) receiver. The paper concentrates on the tradeoff between the soft-bit width and numerical precision requirements for the receiver versus performance. The required numerical precision results obtained in this paper can be used by baseband designers of cost effective UWB systems using Systein-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).
Resumo:
The question "what Monte Carlo models can do and cannot do efficiently" is discussed for some functional spaces that define the regularity of the input data. Data classes important for practical computations are considered: classes of functions with bounded derivatives and Holder type conditions, as well as Korobov-like spaces. Theoretical performance analysis of some algorithms with unimprovable rate of convergence is given. Estimates of computational complexity of two classes of algorithms - deterministic and randomized for both problems - numerical multidimensional integration and calculation of linear functionals of the solution of a class of integral equations are presented. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm for evaluating bilinear forms of matrix powers since they form the so-called Krylov subspaces. Results are presented comparing the performance of the Robust and Non-robust Monte Carlo algorithms. The algorithms are tested on large dense matrices as well as on large unstructured sparse matrices.
Resumo:
This paper discusses the requirements on the numerical precision for a practical Multiband Ultra-Wideband (UWB) consumer electronic solution. To this end we first present the possibilities that UWB has to offer to the consumer electronics market and the possible range of devices. We then show the performance of a model of the UWB baseband system implemented using floating point precision. Then, by simulation we find the minimal numerical precision required to maintain floating-point performance for each of the specific data types and signals present in the UWB baseband. Finally, we present a full description of the numerical requirements for both the transmit and receive components of the UWB baseband. The numerical precision results obtained in this paper can then be used by baseband designers to implement cost effective UWB systems using System-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).
Resumo:
An efficient numerical method is presented for the solution of the Euler equations governing the compressible flow of a real gas. The scheme is based on the approximate solution of a specially constructed set of linearised Riemann problems. An average of the flow variables across the interface between cells is required, and this is chosen to be the arithmetic mean for computational efficiency, which is in contrast to the usual square root averaging. The scheme is applied to a test problem for five different equations of state.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the Euler equations for the compressible flow of an ideal gas. A linearised Riemann problem is defined, and a scheme based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency, leading to arithmetic averaging. This is in contrast to the usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. The scheme is applied to a shock tube problem and a blast wave problem. Each approximate solution compares well with those given by other schemes, and for the shock tube problem is in agreement with the exact solution.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gas dynamics is defined, and a scheme, based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem, and incorporates the technique of operator splitting. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. An extension to the two-dimensional equations with source terms is included. The scheme is applied to the one-dimensional problems of a breaking dam and reflection of a bore, and in each case the approximate solution is compared to the exact solution of ideal fluid flow. The scheme is also applied to a problem of stationary bore generation in a channel of variable cross-section. Finally, the scheme is applied to two other dam-break problems, this time in two dimensions with one having cylindrical symmetry. Each approximate solution compares well with those given by other authors.
Resumo:
An algorithm based on flux difference splitting is presented for the solution of two-dimensional, open channel flows. A transformation maps a non-rectangular, physical domain into a rectangular one. The governing equations are then the shallow water equations, including terms of slope and friction, in a generalized coordinate system. A regular mesh on a rectangular computational domain can then be employed. The resulting scheme has good jump capturing properties and the advantage of using boundary/body-fitted meshes. The scheme is applied to a problem of flow in a river whose geometry induces a region of supercritical flow.
Resumo:
We use a spectral method to solve numerically two nonlocal, nonlinear, dispersive, integrable wave equations, the Benjamin-Ono and the Intermediate Long Wave equations. The proposed numerical method is able to capture well the dynamics of the solutions; we use it to investigate the behaviour of solitary wave solutions of the equations with special attention to those, among the properties usually connected with integrability, for which there is at present no analytic proof. Thus we study in particular the resolution property of arbitrary initial profiles into sequences of solitary waves for both equations and clean interaction of Benjamin-Ono solitary waves. We also verify numerically that the behaviour of the solution of the Intermediate Long Wave equation as the model parameter tends to the infinite depth limit is the one predicted by the theory.
Resumo:
We describe and implement a fully discrete spectral method for the numerical solution of a class of non-linear, dispersive systems of Boussinesq type, modelling two-way propagation of long water waves of small amplitude in a channel. For three particular systems, we investigate properties of the numerically computed solutions; in particular we study the generation and interaction of approximate solitary waves.
Resumo:
In this paper the meteorological processes responsible for transporting tracer during the second ETEX (European Tracer EXperiment) release are determined using the UK Met Office Unified Model (UM). The UM predicted distribution of tracer is also compared with observations from the ETEX campaign. The dominant meteorological process is a warm conveyor belt which transports large amounts of tracer away from the surface up to a height of 4 km over a 36 h period. Convection is also an important process, transporting tracer to heights of up to 8 km. Potential sources of error when using an operational numerical weather prediction model to forecast air quality are also investigated. These potential sources of error include model dynamics, model resolution and model physics. In the UM a semi-Lagrangian monotonic advection scheme is used with cubic polynomial interpolation. This can predict unrealistic negative values of tracer which are subsequently set to zero, and hence results in an overprediction of tracer concentrations. In order to conserve mass in the UM tracer simulations it was necessary to include a flux corrected transport method. Model resolution can also affect the accuracy of predicted tracer distributions. Low resolution simulations (50 km grid length) were unable to resolve a change in wind direction observed during ETEX 2, this led to an error in the transport direction and hence an error in tracer distribution. High resolution simulations (12 km grid length) captured the change in wind direction and hence produced a tracer distribution that compared better with the observations. The representation of convective mixing was found to have a large effect on the vertical transport of tracer. Turning off the convective mixing parameterisation in the UM significantly reduced the vertical transport of tracer. Finally, air quality forecasts were found to be sensitive to the timing of synoptic scale features. Errors in the position of the cold front relative to the tracer release location of only 1 h resulted in changes in the predicted tracer concentrations that were of the same order of magnitude as the absolute tracer concentrations.