106 resultados para nitrogen excretion
Resumo:
Winter wheat was grown in three field experiments, each repeated over two or three seasons, to investigate effects of extending flag leaf life by fungicide application on the concentration, kg ha(-1) and mg grain(-1) of nitrogen (N) and sulphur (S) as well as N:S ratio and sodium dodecyl sulphate (SDS) sedimentation volume. The experiments involved up to six cultivars and different application rates, timings and frequencies of azoxystrobin and epoxiconazole. For every day the duration to 37 % green flag leaf area (m) was extended, N yield was increased by 2.58 kg ha(-1), N per grain by 0.00957 mg, S yield by 0.186 kg ha(-1) and S per grain by 0.000718 mg. The N:S ratio decreased by 0.0135 per day. There was no evidence that these responses varied with cultivar. In contrast, the relationship between flag leaf life and N or S concentration interacted with cultivar. The N and S concentrations of Shamrock, the cultivar that suffered most from brown rust (Puccinia rccondita), increased with the extension of flag leaf life whereas the concentrations of N and S in Malacca, a cultivar more susceptible to Septoria tritici, decreased as flag leaf senescence was delayed. This was because the relationships between m and N and S yields were much better conserved over cultivars than those between m and thousand grain weight (TGW) and grain yield ha(-1). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Field experiments were conducted over 3 years to study the effect of applying triazole and strobilurin fungicides on the bread-making quality of Malacca winter wheat. Averaged over all years the application of a fungicide programme increased yields, particularly when strobilurin fungicides were applied. Reductions in protein concentration, sulphur concentration, Hageberg failing number and loaf volumes also occurred as the amount of fungicide applied increased. However, there were no deleterious effects of fungicide application on sodium dodecyl sulphate (SDS) sedimentation volumes, N:S ratios or dough theology. Effects of fungicide application on bread-making quality were not product specific. Therefore, it appears that new mechanisms to explain strobilurin effects on bread-making quality do not need to be invoked. Where reductions in protein concentration did occur they could be compensated for by a late-season application of nitrogen either as granular ammonium nitrate at flag leaf emergence or foliar urea at anthesis. These applications, however, sometimes increased the N:S ratio of the extracted flour and failed to improve loaf volume. Multiple regression analysis revealed that main effects of year, flour protein concentration and N:S ratio could explain 93% of the variance in loaf volume caused by season, fungicide and nitrogen treatments. However, an equally good fit was achieved by just including sulphur concentration with year. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Field experiments were conducted over 3 years to assess the effect of a triazole fungicide programme, and additions of strobilurin fungicides to it, on nitrogen uptake, accumulation and partitioning in a range of winter wheat cultivars. Commensurate with delayed senescence, fungicide programmes, particularly when including strobilurins, improved grain yield through improvements in both crop biomass and harvest index, although the relationship with green area duration of the flag leaf (GFLAD) depended on year and in some cases, cultivar. In all years fungicide treatments significantly increased the amount of nitrogen in the above-ground biomass, the amount of nitrogen in the grain and the nitrogen harvest index. All these effects could be linearly related to the fungicide effect on GFLAD. These relationships occasionally interacted with cultivar but there was no evidence that fungicide mode of action affected the relationship between GFLAD and yield of nitrogen in the grain. Fungicide treatments significantly reduced the amount of soil mineral N at harvest and when severe disease had been controlled, the net remobilization of N from the vegetation to the grain after anthesis. Fungicide maintained the filling of grain with both dry matter and nitrogen. The proportionate accumulation of nitrogen in the grain was later than that of dry matter and this difference was greater when fungicide had been applied. Effects of fungicide on grain protein concentration and its relationship with GFLAD were inconsistent over year and cultivar. There were several instances where grain protein concentration was unaffected despite large (1(.)5 t/ha) increases in grain yield following fungicide use. Dilution of grain protein concentration following fungicide use, when it did occur, was small compared with what would be predicted by adoption of other yield increasing techniques such as the selection of high yielding cultivars (based on currently available cultivars) or by growing wheat in favourable climates.
Resumo:
The effect of adding strobilurins to a triazole (epoxiconazole) fungicide programme on the quality of a range of wheat cultivars was assessed in field experiments in three successive years. Strobilurin was applied at just flag leaf emergence (azoxystrobin) or at the start of stem extension (azoxystrobin or picoxystrobin) and again at flag leaf emergence or at flag leaf emergence and again at ear emergence (azoxystrobin). All strobilurin treatments reduced disease levels, delayed senescence of the flag leaf and consistently increased yields, thousand grain weight and specific weight. Reductions in Hagberg falling number were observed, even by fungicide applications at the start of stem extension, but effects were small compared to the variation among cultivars. Application of fungicide (triazole or strobilurin) before ear emergence increased the amount of blackpoint, but this was partly countered by applying azoxystrobin at ear emergence. The effect of fungicide on protein concentration differed over seasons and cultivar. Where they occurred. small reductions in protein concentration could be compensated for by extra application of nitrogen as foliar urea at anthesis. Foliar urea (40 kg N ha(-1)) applied at anthesis also improved Hagberg failing number and reduced blackpoint in one of the growing seasons. In one season, the effect of foliar urea at anthesis was compared with applications of granular fertiliser at flag leaf emergence. The granular treatment produced grain with more concentrated protein, while the later, foliar application produced higher specific weights. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A field plot experiment was set up on a sandy loam soil of SW England in order to determine the efficiency of nitrogen use from different cattle manures. The manure treatments were low and high dry matter cattle slurries and one farmyard manure applied at a target rate of 200 kg total Nha(-1) year(-1), and an untreated control. There were three different cropping systems: ryegrass/clover mixture, maize/rye and maize/bare soil, which were evaluated during 1998/99 and 1999/00. Measurements were made of N losses, N uptake and herbage DM yields. Result showed that manure type had a significant effect on N utilisation only for maize. N balances were negative in maize (approximately -247 to -10 kg N) compared to grass (approximately 5-158 kg N). Agronomic management was more important than manure type in influencing N losses, where soil cultivation appeared to be a key factor when comparing maize and grass systems. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Agriculture, particularly intensive crop production, makes a significant contribution to environmental pollution. A variety of canola (Brassica napus) has been genetically modified to enhance nitrogen use efficiency, effectively reducing the amount of fertilizer required for crop production. A partial life-cycle assessment adapted to crop production was used to assess the potential environmental impacts of growing genetically modified, nitrogen use-efficient (GMNUE) canola in North Dakota and Minnesota compared with a conventionally bred control variety. The analysis took into account the entire production system used to produce 1 tonne of canola. This comprised raw material extraction, processing and transportation, as well as all agricultural field operations. All emissions associated with the production of 1 tonne of canola were listed, aggregated and weighted in order to calculate the level of environmental impact. The findings show that there are a range of potential environmental benefits associated with growing GMNUE canola. These include reduced impacts on global warming, freshwater ecotoxicity, eutrophication and acidification. Given the large areas of canola grown in North America and, in particular, Canada, as well as the wide acceptance of genetically modified varieties in this area, there is the potential for GMNUE canola to reduce pollution from agriculture, with the largest reductions predicted to be in greenhouse gases and diffuse water pollution.
Resumo:
Apical leaf necrosis is a physiological process related to nitrogen (N) dynamics in the leaf. Pathogens use leaf nutrients and can thus accelerate this physiological apical necrosis. This process differs from necrosis occurring around pathogen lesions (lesion-induced necrosis), which is a direct result of the interaction between pathogen hyphae and leaf cells. This paper primarily concentrates on apical necrosis, only incorporating lesion-induced necrosis by necessity. The relationship between pathogen dynamics and physiological apical leaf necrosis is modelled through leaf nitrogen dynamics. The specific case of Puccinia triticina infections on Triticum aestivum flag leaves is studied. In the model, conversion of indirectly available N in the form of, for example, leaf cell proteins (N-2(t)) into directly available N (N-1(t), i.e. the form of N that can directly be used by either pathogen or plant sinks) results in apical necrosis. The model reproduces observed trends of disease severity, apical necrosis and green leaf area (GLA) and leaf N dynamics of uninfected and infected leaves. Decreasing the initial amount of directly available N results in earlier necrosis onset and longer necrosis duration. Decreasing the initial amount of indirectly available N, has no effect on necrosis onset and shortens necrosis duration. The model could be used to develop hypotheses on how the disease-GLA relation affects yield loss, which can be tested experimentally. Upon incorporation into crop simulation models, the model might provide a tool to more accurately estimate crop yield and effects of disease management strategies in crops sensitive to fungal pathogens.
Resumo:
The translocation of C and N in a maize-Striga hermonthica association was investigated at three rates of nitrogen application in a glasshouse experiment. The objectives were to measure the transfer of C and N from maize to S. hermonthica and to determine whether the amount of N in the growing medium affected the proportions of C and N transferred. Young plants of maize were labelled in a (CO2)-C-13 atmosphere and leaf tips were immersed in ((NH4)-N-15)(2)SO4 Solution. The Striga x N interaction was not significant for any of the responses measured. Total dry matter for infected maize was significantly smaller than for uninfected maize from 43 to 99 days after planting, but N application increased total dry matter at all sampling times. Infected maize plants partitioned 39-45 % of their total dry matter to the roots compared with 28-31 % for Uninfected maize. Dry matter of S. hermonthica was not affected by the rate of N applied. S. hermonthica derived 100 % of its carbon from maize before emergence, decreasing to 22-59 % thereafter; the corresponding values for nitrogen were up to 59 % pre-emergence and Lip to 100 % after emergence. The relative proportions of nitrogen depleted from the host (up to 10 %) were greater than those of carbon (maximum 1.2 %) at all times of sampling after emergence of the parasite. The results show that the parasite was more dependent on the host for nitrogen than for carbon.
Resumo:
Deletion of both alanine dehydrogenase genes (aldA) in Mesorhizobium loti resulted in the loss of AldA enzyme activity from cultured bacteria and bacteroids but had no effect on the symbiotic performance of Lotus corniculatus plants. Thus, neither indeterminate pea nodules nor determinate L. corniculatus nodules export alanine as the sole nitrogen secretion product.
Resumo:
The biological reduction of atmospheric N-2 to ammonium (nitrogen fixation) provides about 65% of the biosphere's available nitrogen. Most of this ammonium is contributed by legume rhizobia symbioses(1), which are initiated by the infection of legume hosts by bacteria (rhizobia), resulting in formation of root nodules. Within the nodules, rhizobia are found as bacteroids, which perform the nitrogen fixation: to do this, they obtain sources of carbon and energy from the plant, in the form of dicarboxylic acids(2,3). It has been thought that, in return, bacteroids simply provide the plant with ammonium. But here we show that a more complex amino-acid cycle is essential for symbiotic nitrogen fixation by Rhizobium in pea nodules. The plant provides amino acids to the bacteroids, enabling them to shut down their ammonium assimilation. In return, bacteroids act like plant organelles to cycle amino acids back to the plant for asparagine synthesis. The mutual dependence of this exchange prevents the symbiosis being dominated by the plant, and provides a selective pressure for the evolution of mutualism.
Resumo:
Molybdenum(II) complexes [MOX(CO)(2)(eta(3)-allyl)(CH3CN)(2)] (X = Cl or Br) were encapsulated in an aluminium-pillared natural clay or a porous clay heterostructure and allowed to react with bidentate diimine ligands. All the materials obtained were characterised by several solid-state techniques. Powder XRD, and Al-27 and Si-29 MAS NMR were used to investigate the integrity of the pillared clay during the modification treatments. C-13 CP MAS NMR, FTIR, elemental analyses and low-temperature nitrogen adsorption showed that the immobilisation of the precursor complexes was successful as well as the in situ ligand-substitution reaction. The new complex [MoBr(CO)(2)(eta(3)-allyl)(2-aminodipyridyl)] was characterised by single-crystal X-ray diffraction and spectroscopic techniques, and NMR studies were used to investigate its fluxional behaviour in solution. The prepared materials are active for the oxidation of cis-cyclooctene using tert-butyl hydroperoxide as oxidant, though the activity of the isolated complexes is higher. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
Time-resolved studies of the reaction of silylene, SiH2, with N-2 have been attempted at 296, 417, and 484 K, using laser flash photolysis to generate and monitor SiH2. No conclusive evidence for reaction could be found even with pressures of N-2 of 500 Torr. This enables us to set upper limits of ca. 3 x 10(-15) cm(3) molecule(-1) s(-1) for the second-order rate constants. A lower limit for the activation energy, E-a, of ca. 47 kJ mol(-1) is also derived. Ab initio calculations at the G3 level indicate that the only SiH2N2 species of lower energy than the separated reactants is the H2Si...N-2 donor-acceptor (ylid) species with a relative enthalpy of -26 kJ mol(-1), insufficient for observation of reaction under the experimental conditions. Ten bound species on the SiH2N2 surface were found and their energies calculated as well as those of the potential dissociation products: HSiN + NH((3)Sigma(-)) and HNSi + NH((3)Sigma(-)). Additionally two of the transition states involving cyclic-SiH2N2 (siladiazirine) were explored. It appears that siladiazirine is neither thermodynamically nor kinetically stable. The findings indicate that Si-N-d bonds (where N-d is double-bonded nitrogen) are not particularly strong. An unexpected cyclic intermediate was found in the isomerization of silaisocyanamide to silacyanamide.
Resumo:
Complexes have been synthesised with bis(2-pyridine carboxaldehyde) ethylenediimine (1) and bis(2-pyridine carboxaldehyde)propylene-1,3-diimine (2) with all of the available lanthanide trinitrates. Crystal structures were obtained for all but one complex with 1 and for all but one complex with 2. Four distinct structural types were established for 1 but only two for 2, although in all cases the structures contained one ligand bound to the metal in a tetradentate fashion. With 1, the four different structures of the lanthanide(III) nitrate complexes included 11-coordinate [Ln(1)(NO3)(3)(H2O)] for Ln = La; 10 coordinate [Ln(1)(NO3)(3)(H2O)] with one monodentate and two bidentate nitrates for Ln = Ce, then 10-coordinate [Ln(1)(NO3)(3)] for Ln = Pr-Yb with three bidentate nitrates; and 9-coordinate [Ln(1)(NO3)(3)] with one monodentate and two bidentate nitrates for Ln = Lu. On the other hand for 2 only two distinct types of structure are obtained, the first type with Ln = La-Pr and the second type for Ln = Sm-Lu, although all are 10-coordinate with stoichiometry [Ln(2)(NO3)(3)]. The difference between the two types is in the disposition of the ligand relative to the nitrates. With the larger lanthanides La-Pr the ligand is found on one side of the coordination sphere with the three nitrate anions on the other. In these structures, the ligand is folded such that the angle between the two pyridine rings approaches 90degrees, while with the smaller lanthanides Sm-Lu, two nitrates are found on one side of the ligand and one nitrate on the other and the ligand is in an extended conformation such that the two pyridine rings are close to being coplanar. In both series of structures, the Ln-N and Ln-O bond lengths were consistent with the lanthanide contraction though there are significant variations between ostensibly equivalent bonds which are indicative of intramolecular hydrogen bonding and steric crowding in the complexes. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Quantitative structure activity relationships (QSARs) have been developed to optimise the choice of nitrogen heterocyclic molecules that can be used to separate the minor actinides such as americium(III) from europium(III) in the aqueous PUREX raffinate of nuclear waste. Experimental data on distribution coefficients and separation factors (SFs) for 47 such ligands have been obtained and show SF values ranging from 0.61 to 100. The ligands were divided into a training set of 36 molecules to develop the QSAR and a test set of 11 molecules to validate the QSAR. Over 1500 molecular descriptors were calculated for each heterocycle and the Genetic Algorithm was used to select the most appropriate for use in multiple regression equations. Equations were developed fitting the separation factors to 6-8 molecular descriptors which gave r(2) values of >0.8 for the training set and values of >0.7 for the test set, thus showing good predictive quality. The descriptors used in the equations were primarily electronic and steric. These equations can be used to predict the separation factors of nitrogen heterocycles not yet synthesised and/or tested and hence obtain the most efficient ligands for lanthanide and actinide separation. (C) 2003 Elsevier B.V. All rights reserved.