105 resultados para networks in organization
Resumo:
This paper provides an introduction to Wireless Sensor Networks (WSN), their applications in the field of control engineering and elsewhere and gives pointers to future research needs. WSN are collections of stand-alone devices which, typically, have one or more sensors (e.g. temperature, light level), some limited processing capability and a wireless interface allowing communication with a base station. As they are usually battery powered, the biggest challenge is to achieve the necessary monitoring whilst using the least amount of power.
Resumo:
In this paper we present the initial results using an artificial neural network to predict the onset of Parkinson's Disease tremors in a human subject. Data for the network was obtained from implanted deep brain electrodes. A tuned artificial neural network was shown to be able to identify the pattern of the onset tremor from these real time recordings.
Resumo:
In this paper we propose an enhanced relay-enabled distributed coordination function (rDCF) for wireless ad hoc networks. The idea of rDCF is to use high data rate nodes to work as relays for the low data rate nodes. The relay helps to increase the throughput and lower overall blocking time of nodes due to faster dual-hop transmission. rDCF achieves higher throughput over IEEE 802.11 distributed coordination function (DCF). The protocol is further enhanced for higher throughput and reduced energy. These enhancements result from the use of a dynamic preamble (i.e. using short preamble for the relay transmission) and also by reducing unnecessary overhearing (by other nodes not involved in transmission). We have modeled the energy consumption of rDCF, showing that rDCF provides an energy efficiency of 21.7% at 50 nodes over 802.11 DCF. Compared with the existing rDCF, the enhanced rDCF (ErDCF) scheme proposed in this paper yields a throughput improvement of 16.54% (at the packet length of 1000 bytes) and an energy saving of 53% at 50 nodes.
Resumo:
In this paper we consider a cooperative communication system where some a priori information of wireless channels is available at the transmitter. Several opportunistic relaying strategies are developed to fully utilize the available channel information. Then an explicit expression of the outage probability is developed for each proposed cooperative scheme as well as the diversity-multiplexing tradeoff by using order statistics. Our analytical results show that the more channel information available at the transmitter, the better performance a cooperative system can achieve. When the exact values of the source-relay channels are available, the performance loss at low SNR can be effectively suppressed. When the source node has the access to the source-relay and relay-destination channels, the full diversity can be achieved by costing only one extra channel used for relaying transmission, and an optimal diversity-multiplexing tradeoff can be achieved d(r) = (N + 1)(1 - 2r), where N is the number of all possible relaying nodes.
Resumo:
In this paper we consider the possibility of using an artificial neural network to accurately identify the onset of Parkinson’s Disease tremors in human subjects. Data for the network is obtained by means of deep brain implantation in the human brain. Results presented have been obtained from a practical study (i.e. real not simulated data) but should be regarded as initial trials to be discussed further. It can be seen that a tuned artificial neural network can act as an extremely effective predictor in these circumstances.
Resumo:
Differential geometry is used to investigate the structure of neural-network-based control systems. The key aspect is relative order—an invariant property of dynamic systems. Finite relative order allows the specification of a minimal architecture for a recurrent network. Any system with finite relative order has a left inverse. It is shown that a recurrent network with finite relative order has a local inverse that is also a recurrent network with the same weights. The results have implications for the use of recurrent networks in the inverse-model-based control of nonlinear systems.
Resumo:
Theoretical models suggest that decisions about diet, weight and health status are endogenous within a utility maximization framework. In this article, we model these behavioural relationships in a fixed-effect panel setting using a simultaneous equation system, with a view to determining whether economic variables can explain the trends in calorie consumption, obesity and health in Organization for Economic Cooperation and Development (OECD) countries and the large differences among the countries. The empirical model shows that progress in medical treatment and health expenditure mitigates mortality from diet-related diseases, despite rising obesity rates. While the model accounts for endogeneity and serial correlation, results are affected by data limitations.