118 resultados para model predictive control approach


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bayesian decision procedures have already been proposed for and implemented in Phase I dose-escalation studies in healthy volunteers. The procedures have been based on pharmacokinetic responses reflecting the concentration of the drug in blood plasma and are conducted to learn about the dose-response relationship while avoiding excessive concentrations. However, in many dose-escalation studies, pharmacodynamic endpoints such as heart rate or blood pressure are observed, and it is these that should be used to control dose-escalation. These endpoints introduce additional complexity into the modeling of the problem relative to pharmacokinetic responses. Firstly, there are responses available following placebo administrations. Secondly, the pharmacodynamic responses are related directly to measurable plasma concentrations, which in turn are related to dose. Motivated by experience of data from a real study conducted in a conventional manner, this paper presents and evaluates a Bayesian procedure devised for the simultaneous monitoring of pharmacodynamic and pharmacokinetic responses. Account is also taken of the incidence of adverse events. Following logarithmic transformations, a linear model is used to relate dose to the pharmacokinetic endpoint and a quadratic model to relate the latter to the pharmacodynamic endpoint. A logistic model is used to relate the pharmacokinetic endpoint to the risk of an adverse event.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we consider the rendering equation derived from the illumination model called Cook-Torrance model. A Monte Carlo (MC) estimator for numerical treatment of the this equation, which is the Fredholm integral equation of second kind, is constructed and studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new identification algorithm is introduced for the Hammerstein model consisting of a nonlinear static function followed by a linear dynamical model. The nonlinear static function is characterised by using the Bezier-Bernstein approximation. The identification method is based on a hybrid scheme including the applications of the inverse of de Casteljau's algorithm, the least squares algorithm and the Gauss-Newton algorithm subject to constraints. The related work and the extension of the proposed algorithm to multi-input multi-output systems are discussed. Numerical examples including systems with some hard nonlinearities are used to illustrate the efficacy of the proposed approach through comparisons with other approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives. Theoretic modeling and experimental studies suggest that functional electrical stimulation (FES) can improve trunk balance in spinal cord injured subjects. This can have a positive impact on daily life, increasing the volume of bimanual workspace, improving sitting posture, and wheelchair propulsion. A closed loop controller for the stimulation is desirable, as it can potentially decrease muscle fatigue and offer better rejection to disturbances. This paper proposes a biomechanical model of the human trunk, and a procedure for its identification, to be used for the future development of FES controllers. The advantage over previous models resides in the simplicity of the solution proposed, which makes it possible to identify the model just before a stimulation session ( taking into account the variability of the muscle response to the FES). Materials and Methods. The structure of the model is based on previous research on FES and muscle physiology. Some details could not be inferred from previous studies, and were determined from experimental data. Experiments with a paraplegic volunteer were conducted in order to measure the moments exerted by the trunk-passive tissues and artificially stimulated muscles. Data for model identification and validation also were collected. Results. Using the proposed structure and identification procedure, the model could adequately reproduce the moments exerted during the experiments. The study reveals that the stimulated trunk extensors can exert maximal moment when the trunk is in the upright position. In contrast, previous studies show that able-bodied subjects can exert maximal trunk extension when flexed forward. Conclusions. The proposed model and identification procedure are a successful first step toward the development of a model-based controller for trunk FES. The model also gives information on the trunk in unique conditions, normally not observable in able-bodied subjects (ie, subject only to extensor muscles contraction).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rifaximin, a rifamycin derivative, has been reported to induce clinical remission of active Crohn's disease (CD), a chronic inflammatory bowel disorder. In order to understand how rifaximin affects the colonic microbiota and its metabolism, an in vitro human colonic model system was used in this study. We investigated the impact of the administration of 1800 mg/day of rifaximin on the faecal microbiota of four patients affected by colonic active CD [Crohn's disease activity index (CDAI > 200)] using a continuous culture colonic model system. We studied the effect of rifaximin on the human gut microbiota using fluorescence in situ hybridization, quantitative PCR and PCR–denaturing gradient gel electrophoresis. Furthermore, we investigated the effect of the antibiotic on microbial metabolic profiles, using 1H-NMR and solid phase microextraction coupled with gas chromatography/mass spectrometry, and its potential genotoxicity and cytotoxicity, using Comet and growth curve assays. Rifaximin did not affect the overall composition of the gut microbiota, whereas it caused an increase in concentration of Bifidobacterium, Atopobium and Faecalibacterium prausnitzii. A shift in microbial metabolism was observed, as shown by increases in short-chain fatty acids, propanol, decanol, nonanone and aromatic organic compounds, and decreases in ethanol, methanol and glutamate. No genotoxicity or cytotoxicity was attributed to rifaximin, and conversely rifaximin was shown to have a chemopreventive role by protecting against hydrogen peroxide-induced DNA damage. We demonstrated that rifaximin, while not altering the overall structure of the human colonic microbiota, increased bifidobacteria and led to variation of metabolic profiles associated with potential beneficial effects on the host.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper illustrates how internal model control of nonlinear processes can be achieved by recurrent neural networks, e.g. fully connected Hopfield networks. It is shown that using results developed by Kambhampati et al. (1995), that once a recurrent network model of a nonlinear system has been produced, a controller can be produced which consists of the network comprising the inverse of the model and a filter. Thus, the network providing control for the nonlinear system does not require any training after it has been trained to model the nonlinear system. Stability and other issues of importance for nonlinear control systems are also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relationship between minimum variance and minimum expected quadratic loss feedback controllers for linear univariate discrete-time stochastic systems is reviewed by taking the approach used by Caines. It is shown how the two methods can be regarded as providing identical control actions as long as a noise-free measurement state-space model is employed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A nonlinear general predictive controller (NLGPC) is described which is based on the use of a Hammerstein model within a recursive control algorithm. A key contribution of the paper is the use of a novel, one-step simple root solving procedure for the Hammerstein model, this being a fundamental part of the overall tuning algorithm. A comparison is made between NLGPC and nonlinear deadbeat control (NLDBC) using the same one-step nonlinear components, in order to investigate NLGPC advantages and disadvantages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A common problem in many data based modelling algorithms such as associative memory networks is the problem of the curse of dimensionality. In this paper, a new two-stage neurofuzzy system design and construction algorithm (NeuDeC) for nonlinear dynamical processes is introduced to effectively tackle this problem. A new simple preprocessing method is initially derived and applied to reduce the rule base, followed by a fine model detection process based on the reduced rule set by using forward orthogonal least squares model structure detection. In both stages, new A-optimality experimental design-based criteria we used. In the preprocessing stage, a lower bound of the A-optimality design criterion is derived and applied as a subset selection metric, but in the later stage, the A-optimality design criterion is incorporated into a new composite cost function that minimises model prediction error as well as penalises the model parameter variance. The utilisation of NeuDeC leads to unbiased model parameters with low parameter variance and the additional benefit of a parsimonious model structure. Numerical examples are included to demonstrate the effectiveness of this new modelling approach for high dimensional inputs.