65 resultados para meta-mood
Resumo:
In recent years an increasing number of papers have employed meta-analysis to integrate effect sizes of researchers’ own series of studies within a single paper (“internal meta-analysis”). Although this approach has the obvious advantage of obtaining narrower confidence intervals, we show that it could inadvertently inflate false-positive rates if researchers are motivated to use internal meta-analysis in order to obtain a significant overall effect. Specifically, if one decides whether to stop or continue a further replication experiment depending on the significance of the results in an internal meta-analysis, false-positive rates would increase beyond the nominal level. We conducted a set of Monte-Carlo simulations to demonstrate our argument, and provided a literature review to gauge awareness and prevalence of this issue. Furthermore, we made several recommendations when using internal meta-analysis to make a judgment on statistical significance.
Resumo:
Given capacity limits, only a subset of stimuli 1 give rise to a conscious percept. Neurocognitive models suggest that humans have evolved mechanisms that operate without awareness and prioritize threatening stimuli over neutral stimuli in subsequent perception. In this meta analysis, we review evidence for this ‘standard hypothesis’ emanating from three widely used, but rather different experimental paradigms that have been used to manipulate awareness. We found a small pooled threat-bias effect in the masked visual probe paradigm, a medium effect in the binocular rivalry paradigm and highly inconsistent effects in the breaking continuous flash suppression paradigm. Substantial heterogeneity was explained by the stimulus type: the only threat stimuli that were robustly prioritized across all three paradigms were fearful faces. Meta regression revealed that anxiety may modulate threat biases, but only under specific presentation conditions. We also found that insufficiently rigorous awareness measures, inadequate control of response biases and low level confounds may undermine claims of genuine unconscious threat processing. Considering the data together, we suggest that uncritical acceptance of the standard hypothesis is premature: current behavioral evidence for threat-sensitive visual processing that operates without awareness is weak.
Resumo:
We study the relationship between the sentiment levels of Twitter users and the evolving network structure that the users created by @-mentioning each other. We use a large dataset of tweets to which we apply three sentiment scoring algorithms, including the open source SentiStrength program. Specifically we make three contributions. Firstly we find that people who have potentially the largest communication reach (according to a dynamic centrality measure) use sentiment differently than the average user: for example they use positive sentiment more often and negative sentiment less often. Secondly we find that when we follow structurally stable Twitter communities over a period of months, their sentiment levels are also stable, and sudden changes in community sentiment from one day to the next can in most cases be traced to external events affecting the community. Thirdly, based on our findings, we create and calibrate a simple agent-based model that is capable of reproducing measures of emotive response comparable to those obtained from our empirical dataset.