279 resultados para meridional overturning circulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the sensitivity of Northern Hemisphere polar ozone recovery to a scenario in which there is rapid loss of Arctic summer sea ice in the first half of the 21st century. The issue is addressed by coupling a chemistry climate model to an ocean general circulation model and performing simulations of ozone recovery with, and without, an external perturbation designed to cause a rapid and complete loss of summertime Arctic sea ice. Under this extreme perturbation, the stratospheric response takes the form of a springtime polar cooling which is dynamical rather than radiative in origin, and is caused by reduced wave forcing from the troposphere. The response lags the onset of the sea-ice perturbation by about one decade and lasts for more than two decades, and is associated with an enhanced weakening of the North Atlantic meridional overturning circulation. The stratospheric dynamical response leads to a 10 DU reduction in polar column ozone, which is statistically robust. While this represents a modest loss, it has the potential to induce a delay of roughly one decade in Arctic ozone recovery estimates made in the 2006 Scientific Assessment of Ozone Depletion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through study of observations and coupled climate simulations, it is argued that the mean position of the Inter-Tropical Convergence Zone (ITCZ) north of the equator is a consequence of a northwards heat transport across the equator by ocean circulation. Observations suggest that the hemispheric net radiative forcing of climate at the top of the atmosphere is almost perfectly symmetric about the equator, and so the total (atmosphere plus ocean) heat transport across the equator is small (order 0.2 PW northwards). Due to the Atlantic ocean’s meridional overturning circulation, however, the ocean carries significantly more heat northwards across the equator (order 0.4 PW) than does the coupled system. There are two primary consequences. First, atmospheric heat transport is southwards across the equator to compensate (0.2 PW southwards), resulting in the ITCZ being displaced north of the equator. Second, the atmosphere, and indeed the ocean, is slightly warmer (by perhaps 2 °C) in the northern hemisphere than in the southern hemisphere. This leads to the northern hemisphere emitting slightly more outgoing longwave radiation than the southern hemisphere by virtue of its relative warmth, supporting the small northward heat transport by the coupled system across the equator. To conclude, the coupled nature of the problem is illustrated through study of atmosphere–ocean–ice simulations in the idealized setting of an aquaplanet, resolving the key processes at work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coupled climate dynamics underlying large, rapid, and potentially irreversible changes in ice cover are studied. A global atmosphere–ocean–sea ice general circulation model with idealized aquaplanet geometry is forced by gradual multi-millennial variations in solar luminosity. The model traverses a hysteresis loop between warm ice-free conditions and cold glacial conditions in response to ±5 W m−2 variations in global, annual-mean insolation. Comparison of several model configurations confirms the importance of polar ocean processes in setting the sensitivity and time scales of the transitions. A “sawtooth” character is found with faster warming and slower cooling, reflecting the opposing effects of surface heating and cooling on upper-ocean buoyancy and, thus, effective heat capacity. The transition from a glacial to warm, equable climate occurs in about 200 years. In contrast to the “freshwater hosing” scenario, transitions are driven by radiative forcing and sea ice feedbacks. The ocean circulation, and notably the meridional overturning circulation (MOC), does not drive the climate change. The MOC (and associated heat transport) collapses poleward of the advancing ice edge, but this is a purely passive response to cooling and ice expansion. The MOC does, however, play a key role in setting the time scales of the transition and contributes to the asymmetry between warming and cooling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ice core evidence indicates that even though atmospheric CO2 concentrations did not exceed ~300 ppm at any point during the last 800 000 years, East Antarctica was at least ~3–4 °C warmer than preindustrial (CO2~280 ppm) in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (~3000 years) and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as "Warmer than Present Transients" (WPTs). We present a series of experiments to investigate the impact of deglacial meltwater on the Atlantic Meridional Overturning Circulation (AMOC) and Antarctic temperature. It is well known that a slowed AMOC would increase southern sea surface temperature (SST) through the bipolar seesaw and observational data suggests that the AMOC remained weak throughout the terminations preceding WPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. We present two 800 kyr transient simulations using the Intermediate Complexity model GENIE-1 which demonstrate that meltwater forcing generates transient southern warming that is consistent with the timing of WPTs, but is not sufficient (in this single parameterisation) to reproduce the magnitude of observed warmth. In order to investigate model and boundary condition uncertainty, we present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP) and three snapshot HadCM3 simulations at 130 000 BP. Only with consideration of the possible feedback of West Antarctic Ice Sheet (WAIS) retreat does it become possible to simulate the magnitude of observed warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of destructive mesoscale ‘polar low’ cyclones in the subpolar North Atlantic is projected to decline under anthropogenic change, due to an increase in atmospheric static stability. This letter reports on the role of changes in ocean circulation in shaping the atmospheric stability. In particular, the Atlantic Meridional Overturning Circulation (AMOC) is projected to weaken in response to anthropogenic forcing, leading to a local minimum in warming in this region. The reduced warming is restricted to the lower troposphere, hence contributing to the increase in static stability. Linear correlation analysis of the CMIP3 climate model ensemble suggests that around half of the model uncertainty in the projected stability response arises from the varied response of the AMOC between models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex cyclical nature of Pleistocene climate, driven by the evolving orbital configuration of the Earth, is well known but not well understood. A major climatic transition took place at the Mid-Brunhes Event (MBE), ca. 430 ka ago after which the amplitude of the ca.100 ka climate oscillations increased, with substantially warmer interglacials, including periods warmer than present. Recent modelling has indicated that while the timing of these warmer-than-present transient (WPT) events is consistent with southern warming due to a deglaciation-forced slowdown of the Atlantic Meridional Overturning Circulation, the magnitude of warming requires a local amplification, for which a candidate is the feedback of significant West Antarctic Ice Sheet (WAIS) retreat. We here extend this argument, based on the absence of WPTs in the early ice core record (450–800 ka ago), to hypothesize that the MBE could be a manifestation of decreased WAIS stability, triggered by ongoing subglacial erosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated mechanisms for the Atlantic Meridional Overturning Circulation (AMOC) variability at 26.5° N (other than the Ekman component) that can be related to external forcings, in particular wind variability. Resolution dependence is studied using identical experiments with 1° and 1/4° NEMO model runs over 1960–2010. The analysis shows that much of the variability in the AMOC at 26° N can be related to the wind strength over the North Atlantic, through mechanisms lagged on different timescales. At ~ 1-year lag the January–June difference of mean sea level pressure between high and mid-latitudes in the North Atlantic explains 35–50% of the interannual AMOC variability (with negative correlation between wind strength and AMOC). At longer lead timescales ~ 4 years, strong (weak) winds over the northern North Atlantic (specifically linked to the NAO index) are followed by higher (lower) AMOC transport, but this mechanism only works in the 1/4° model. Analysis of the density correlations suggests an increase (decrease) in deep water formation in the North Atlantic subpolar gyre to be the cause. Therefore another 30% of the AMOC variability at 26° N can be related to density changes in the top 1000 m in the Labrador and Irminger seas occurring ~ 4 years earlier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea level change predicted by the CMIP5 atmosphere–ocean general circulation models (AOGCMs) is not spatially homogeneous. In particular, the sea level change in the North Atlantic is usually characterised by a meridional dipole pattern with higher sea level rise north of 40°N and lower to the south. The spread among models is also high in that region. Here we evaluate the role of surface buoyancy fluxes by carrying out simulations with the FAMOUS low-resolution AOGCM forced by surface freshwater and heat flux changes from CO2-forced climate change experiments with CMIP5 AOGCMs, and by a standard idealised surface freshwater flux applied in the North Atlantic. Both kinds of buoyancy flux change lead to the formation of the sea level dipole pattern, although the effect of the heat flux has a greater magnitude, and is the main cause of the spread of results among the CMIP5 models. By using passive tracers in FAMOUS to distinguish between additional and redistributed buoyancy, we show that the enhanced sea level rise north of 40°N is mainly due to the direct steric effect (the reduction of sea water density) caused by adding heat or freshwater locally. The surface buoyancy forcing also causes a weakening of the Atlantic meridional overturning circulation, and the consequent reduction of the northward ocean heat transport imposes a negative tendency on sea level rise, producing the reduced rise south of 40°N. However, unlike previous authors, we find that this indirect effect of buoyancy forcing is generally less important than the direct one, except in a narrow band along the east coast of the US, where it plays a major role and leads to sea level rise, as found by previous authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the 1960s and early 1970s sea surface temperatures in the North Atlantic Ocean cooled rapidly. There is still considerable uncertainty about the causes of this event, although various mechanisms have been proposed. In this observational study it is demonstrated that the cooling proceeded in several distinct stages. Cool anomalies initially appeared in the mid-1960s in the Nordic Seas and Gulf Stream Extension, before spreading to cover most of the Subpolar Gyre. Subsequently, cool anomalies spread into the tropical North Atlantic before retreating, in the late 1970s, back to the Subpolar Gyre. There is strong evidence that changes in atmospheric circulation, linked to a southward shift of the Atlantic ITCZ, played an important role in the event, particularly in the period 1972-76. Theories for the cooling event must account for its distinctive space-time evolution. Our analysis suggests that the most likely drivers were: 1) The “Great Salinity Anomaly” of the late 1960s; 2) An earlier warming of the subpolar North Atlantic, which may have led to a slow-down in the Atlantic Meridional Overturning Circulation; 3) An increase in anthropogenic sulphur dioxide emissions. Determining the relative importance of these factors is a key area for future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely thought that changes in both the surface buoyancy fluxes and wind stress drive variability in the Atlantic meridional overturning circulation (AMOC), but that they drive variability on different time scales. For example, wind forcing dominates short-term variability through its effects on Ekman currents and coastal upwelling, whereas buoyancy forcing is important for longer time scales (multiannual and decadal). However, the role of the wind forcing on multiannual to decadal time scales is less clear. Here the authors present an analysis of simulations with the Nucleus for European Modelling of the Ocean (NEMO) ocean model with the aim of explaining the important drivers of the zonal density gradient at 26°N, which is directly related to the AMOC. In the experiments, only one of either the wind stress or the buoyancy forcing is allowed to vary in time, whereas the other remains at its seasonally varying climatology. On subannual time scales, variations in the density gradient, and in the AMOC minus Ekman, are driven largely by local wind-forced coastal upwelling at both the western and eastern boundaries. On decadal time scales, buoyancy forcing related to the North Atlantic Oscillation dominates variability in the AMOC. Interestingly, however, it is found that wind forcing also plays a role at longer time scales, primarily impacting the interannual variability through the excitation of Rossby waves in the central Atlantic, which propagate westward to interact with the western boundary, but also by modulating the decadal time-scale response to buoyancy forcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic ocean heat uptake is a key factor in determining climate change and sea-level rise. There is considerable uncertainty in projections of freshwater forcing of the ocean, with the potential to influence ocean heat uptake. We investigatethis by adding either -0.1 Sv or +0.1 Sv freshwater to the Atlantic in global climate model simulations, simultaneously imposing an atmospheric CO2 increase. The resulting changes in the Atlantic meridional overturning circulation are roughly equal and opposite (±2Sv). The impact of the perturbation on ocean heat content is more complex, although it is relatively small (~5%) compared to the total anthropogenic heat uptake. Several competing processes either accelerate or retard warming at different depths. Whilst positive freshwater perturbations cause an overall heating of the Atlantic, negative perturbations produce insignificant net changes in heat content. The processes active in our model appear robust, although their net result is likely model- and experiment-dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. 1). There is a need to narrow uncertainty2 in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow—especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric CO2 concentration is expected to continue rising in the coming decades, but natural or artificial processes may eventually reduce it. We show that, in the FAMOUS atmosphere-ocean general circulation model, the reduction of ocean heat content as radiative forcing decreases is greater than would be expected from a linear model simulation of the response to the applied forcings. We relate this effect to the behavior of the Atlantic meridional overturning circulation (AMOC): the ocean cools more efficiently with a strong AMOC. The AMOC weakens as CO2 rises, then strengthens as CO2 declines, but temporarily overshoots its original strength. This nonlinearity comes mainly from the accumulated advection of salt into the North Atlantic, which gives the system a longer memory. This implies that changes observed in response to different CO2 scenarios or from different initial states, such as from past changes, may not be a reliable basis for making projections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model simulations of the next few decades are widely used in assessments of climate change impacts and as guidance for adaptation. Their non-linear nature reveals a level of irreducible uncertainty which it is important to understand and quantify, especially for projections of near-term regional climate. Here we use large idealised initial condition ensembles of the FAMOUS global climate model with a 1 %/year compound increase in CO2 levels to quantify the range of future temperatures in model-based projections. These simulations explore the role of both atmospheric and oceanic initial conditions and are the largest such ensembles to date. Short-term simulated trends in global temperature are diverse, and cooling periods are more likely to be followed by larger warming rates. The spatial pattern of near-term temperature change varies considerably, but the proportion of the surface showing a warming is more consistent. In addition, ensemble spread in inter-annual temperature declines as the climate warms, especially in the North Atlantic. Over Europe, atmospheric initial condition uncertainty can, for certain ocean initial conditions, lead to 20 year trends in winter and summer in which every location can exhibit either strong cooling or rapid warming. However, the details of the distribution are highly sensitive to the ocean initial condition chosen and particularly the state of the Atlantic meridional overturning circulation. On longer timescales, the warming signal becomes more clear and consistent amongst different initial condition ensembles. An ensemble using a range of different oceanic initial conditions produces a larger spread in temperature trends than ensembles using a single ocean initial condition for all lead times. This highlights the potential benefits from initialising climate predictions from ocean states informed by observations. These results suggest that climate projections need to be performed with many more ensemble members than at present, using a range of ocean initial conditions, if the uncertainty in near-term regional climate is to be adequately quantified.