114 resultados para leaf decomposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A One-Dimensional Time to Explosion (ODTX) apparatus has been used to study the times to explosion of a number of compositions based on RDX and HMX over a range of contact temperatures. The times to explosion at any given temperature tend to increase from RDX to HMX and with the proportion of HMX in the composition. Thermal ignition theory has been applied to time to explosion data to calculate kinetic parameters. The apparent activation energy for all of the compositions lay between 127 kJ mol−1 and 146 kJ mol−1. There were big differences in the pre-exponential factor and this controlled the time to explosion rather than the activation energy for the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf expansion in the fast-growing tree,Populus × euramericana was stimulated by elevated [CO2] in a closed-canopy forest plantation, exposed using a free air CO2 enrichment technique enabling long-term experimentation in field conditions. The effects of elevated [CO2] over time were characterized and related to the leaf plastochron index (LPI), and showed that leaf expansion was stimulated at very early (LPI, 0–3) and late (LPI, 6–8) stages in development. Early and late effects of elevated [CO2] were largely the result of increased cell expansion and increased cell production, respectively. Spatial effects of elevated [CO2] were also marked and increased final leaf size resulted from an effect on leaf area, but not leaf length, demonstrating changed leaf shape in response to [CO2]. Leaves exhibited a basipetal gradient of leaf development, investigated by defining seven interveinal areas, with growth ceasing first at the leaf tip. Interestingly, and in contrast to other reports, no spatial differences in epidermal cell size were apparent across the lamina, whereas a clear basipetal gradient in cell production rate was found. These data suggest that the rate and timing of cell production was more important in determining leaf shape, given the constant cell size across the leaf lamina. The effect of elevated [CO2] imposed on this developmental gradient suggested that leaf cell production continued longer in elevated [CO2] and that basal increases in cell production rate were also more important than altered cell expansion for increased final leaf size and altered leaf shape in elevated [CO2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of elevated CO2 on leaf development in three genotypes of Populus were investigated during canopy closure, following exposure to elevated CO2 over 3 yr using free-air enrichment.• Leaf quality was altered such that nitrogen concentration per unit d. wt (Nmass) declined on average by 22 and 13% for sun and shade leaves, respectively, in elevated CO2. There was little evidence that this was the result of ‘dilution’ following accumulation of nonstructural carbohydrates. Most likely, this was the result of increased leaf thickness. Specific leaf area declined in elevated CO2 on average by 29 and 5% for sun and shade leaves, respectively.• Autumnal senescence was delayed in elevated CO2 with a 10% increase in the number of days at which 50% leaf loss occurred in elevated as compared with ambient CO2.• These data suggest that changes in leaf quality may be predicted following long-term acclimation of fast-growing forest trees to elevated CO2, and that canopy longevity may increase, with important implications for forest productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a free-air CO2 enrichment (FACE) experiment, poplar trees (Populus · euramericana clone I214) were exposed to either ambient or elevated [CO2] from planting, for a 5-year period during canopy development, closure, coppice and re-growth. In each year, measurements were taken of stomatal density (SD, number mm2) and stomatal index (SI, the proportion of epidermal cells forming stomata). In year 5, measurements were also taken of leaf stomatal conductance (gs, lmol m2 s1), photosynthetic CO2 fixation (A, mmol m2 s1), instantaneous water-use efficiency (A/E) and the ratio of intercellular to atmospheric CO2 (Ci:Ca). Elevated [CO2] caused reductions in SI in the first year, and in SD in the first 2 years, when the canopy was largely open. In following years, when the canopy had closed, elevated [CO2] had no detectable effects on stomatal numbers or index. In contrast, even after 5 years of exposure to elevated [CO2], gs was reduced, A/E was stimulated, and Ci:Ca was reduced relative to ambient [CO2]. These outcomes from the long-term realistic field conditions of this forest FACE experiment suggest that stomatal numbers (SD and SI) had no role in determining the improved instantaneous leaf-level efficiency of water use under elevated [CO2]. We propose that altered cuticular development during canopy closure may partially explain the changing response of stomata to elevated [CO2], although the mechanism for this remains obscure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article investigates income and population biases in the distribution of aid and decomposes recipients by geographic region. Previous analyses aggregate recipients and assume biases have an equal impact. Results demonstrate that although while a bias towards middle-income and medium-sized countries persists in the full sample, the extent of such biases differs significantly by region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to investigate the effect of elevated (550 ± 17 μmol mol−1) CO2 concentration ([CO2]) on leaf ultrastructure, leaf photosynthesis and seed yield of two soybean cultivars [Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35] at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic acclimation occurred in soybean plants exposed to long-term elevated [CO2] and varied with cultivars and developmental stages. Photosynthetic acclimation occurred at the beginning bloom (R1) stage for both cultivars, but at the beginning seed (R5) stage only for Zhonghuang 13. No photosynthetic acclimation occurred at the beginning pod (R3) stage for either cultivar. Elevated [CO2] increased the number and size of starch grains in chloroplasts of the two cultivars. Soybean leaf senescence was accelerated under elevated [CO2], determined by unclear chloroplast membrane and blurred grana layer at the beginning bloom (R1) stage. The different photosynthesis response to elevated [CO2] between cultivars at the beginning seed (R5) contributed to the yield difference under elevated [CO2]. Elevated [CO2] significantly increased the yield of Zhonghuang 35 by 26% with the increased pod number of 31%, but not for Zhonghuang 13 without changes of pod number. We conclude that the occurrence of photosynthetic acclimation at the beginning seed (R5) stage for Zhonghuang 13 restricted the development of extra C sink under elevated [CO2], thereby limiting the response to elevated [CO2] for the seed yield of this cultivar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar (Populus) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO2 concentrations ([CO2]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO2]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO2] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO2] to above-ground pools, as fine root biomass declined and its [CO2] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO2] during the 6 yr experiment. However, elevated [CO2] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO2] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of quasi-static and dynamic testing of glass fiber-reinforced polyester leaf suspension for rail freight vehicles named Euroleaf. The principal elements of the suspension's design and manufacturing process are initially summarized. Comparison between quasi-static tests and finite element predictions are then presented. The Euroleaf suspension have been mounted on a tipper wagon and tested dynamically at tare and full load on a purpose-built shaker rig. A shaker rig dynamic testing methodology has been pioneered for rail vehicles, which follows closely road vehicle suspension dynamic testing methodology. The use and evaluation of this methodology have demonstrated that the Euroleaf suspension is dynamically much softer than steel suspensions even though it is statically much stiffer. As a consequence, the suspension dynamic loading at laden loading conditions is reduced compared to the most advanced steel leaf suspension over shaker rig track tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper extends the singular value decomposition to a path of matricesE(t). An analytic singular value decomposition of a path of matricesE(t) is an analytic path of factorizationsE(t)=X(t)S(t)Y(t) T whereX(t) andY(t) are orthogonal andS(t) is diagonal. To maintain differentiability the diagonal entries ofS(t) are allowed to be either positive or negative and to appear in any order. This paper investigates existence and uniqueness of analytic SVD's and develops an algorithm for computing them. We show that a real analytic pathE(t) always admits a real analytic SVD, a full-rank, smooth pathE(t) with distinct singular values admits a smooth SVD. We derive a differential equation for the left factor, develop Euler-like and extrapolated Euler-like numerical methods for approximating an analytic SVD and prove that the Euler-like method converges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photosynthetic characteristics of eight contrasting cocoa genotypes were studied with the aim of examining genotypic variation in maximum (light-saturated) photosynthetic rates, light-response curve parameters and water use efficiency. Photosynthetic traits were derived from single leaf gas exchange measurements using a portable infra-red gas analyser. All measurements were conducted in a common greenhouse environment. Significant variation was observed in light-saturated photosynthesis ranging from 3.4 to 5.7 µmol CO2 m-2 s-1 for the clones IMC 47 and SCA 6, respectively. Furthermore, analyses of photosynthetic light response curves indicated genotypic differences in light saturation point and quantum efficiency (i.e. the efficiency of light use). Stomatal conductance was a significant factor underlying genotypic differences in assimilation. Genotypic variation was also observed in a number of leaf traits, including specific leaf area (the ratio of leaf area to leaf weight), chlorophyll concentration and nitrogen content. There was a positive correlation between leaf nitrogen per unit area and light-saturated photosynthesis. Water use efficiency, defined as the ratio of photosynthetic rate to transpiration rate, also varied significantly between clones (ranging from 3.1 mmol mol-1 H2O for the clone IMC 47 to 4.2 mmol mol-1 H2O for the clone ICS 1). Water use efficiency was a negative function of specific leaf area, suggesting that low specific leaf area might be a useful criterion for selection for increased water use efficiency. It is concluded that both variation in water use efficiency and the photosynthetic response to light have the potential to be exploited in breeding programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canopy leaf area index (LAI), defined as the single-sided leaf area per unit ground area, is a quantitative measure of canopy foliar area. LAI is a controlling biophysical property of vegetation function, and quantifying LAI is thus vital for understanding energy, carbon and water fluxes between the land surface and the atmosphere. LAI is routinely available from Earth Observation (EO) instruments such as MODIS. However EO-derived estimates of LAI require validation before they are utilised by the ecosystem modelling community. Previous validation work on the MODIS collection 4 (c4) product suggested considerable error especially in forested biomes, and as a result significant modification of the MODIS LAI algorithm has been made for the most recent collection 5 (c5). As a result of these changes the current MODIS LAI product has not been widely validated. We present a validation of the MODIS c5 LAI product over a 121 km2 area of mixed coniferous forest in Oregon, USA, based on detailed ground measurements which we have upscaled using high resolution EO data. Our analysis suggests that c5 shows a much more realistic temporal LAI dynamic over c4 values for the site we examined. We find improved spatial consistency between the MODIS c5 LAI product and upscaled in situ measurements. However results also suggest that the c5 LAI product underestimates the upper range of upscaled in situ LAI measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current methods for estimating event-related potentials (ERPs) assume stationarity of the signal. Empirical Mode Decomposition (EMD) is a data-driven decomposition technique that does not assume stationarity. We evaluated an EMD-based method for estimating the ERP. On simulated data, EMD substantially reduced background EEG while retaining the ERP. EMD-denoised single trials also estimated shape, amplitude, and latency of the ERP better than raw single trials. On experimental data, EMD-denoised trials revealed event-related differences between two conditions (condition A and B) more effectively than trials lowpass filtered at 40 Hz. EMD also revealed event-related differences on both condition A and condition B that were clearer and of longer duration than those revealed by low-pass filtering at 40 Hz. Thus, EMD-based denoising is a promising data-driven, nonstationary method for estimating ERPs and should be investigated further.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green roof plants alter the microclimate of building roofs and may improve roof insulation. They act by providing cooling by shading, but also through transpiration of water through their stomata. However, leaf surfaces can become warmer when plants close the stomata and decrease water loss in response to drying substrate (typically associated with green roofs during summers), also reducing transpirational cooling. By using a range of contrasting plant types (Sedum mix – an industry green roof ‘standard’, Stachys byzantina, Bergenia cordifolia and Hedera hibernica) we tested the hypothesis that plants differ in their ‘cooling potential’. We firstly examined how leaf morphology influenced leaf temperature and how drying substrate altered that response. Secondly, we investigated the relationship between leaf surface temperatures and the air temperatures immediately above the canopies (i.e. potential to provide aerial cooling). Finally we measured how the plant type influenced the substrate temperature below the canopy (i.e. potential for building cooling). In our experiments Stachys outperformed the other species in terms of leaf surface cooling (even in drying substrate, e.g. 5 oC cooler compared with Sedum), substrate cooling beneath its canopy (up to 12 oC) and even - during short intervals over hottest still periods - the air above the canopy (up to 1 oC, when soil moisture was not limited). We suggest that the choice of plant species on green roofs should not be entirely dictated by what survives on the shallow substrates of extensive systems, but consideration should be given to supporting those species providing the greatest eco-system service potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scoring rules are an important tool for evaluating the performance of probabilistic forecasting schemes. A scoring rule is called strictly proper if its expectation is optimal if and only if the forecast probability represents the true distribution of the target. In the binary case, strictly proper scoring rules allow for a decomposition into terms related to the resolution and the reliability of a forecast. This fact is particularly well known for the Brier Score. In this article, this result is extended to forecasts for finite-valued targets. Both resolution and reliability are shown to have a positive effect on the score. It is demonstrated that resolution and reliability are directly related to forecast attributes that are desirable on grounds independent of the notion of scores. This finding can be considered an epistemological justification of measuring forecast quality by proper scoring rules. A link is provided to the original work of DeGroot and Fienberg, extending their concepts of sufficiency and refinement. The relation to the conjectured sharpness principle of Gneiting, et al., is elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

References (20)Cited By (1)Export CitationAboutAbstract Proper scoring rules provide a useful means to evaluate probabilistic forecasts. Independent from scoring rules, it has been argued that reliability and resolution are desirable forecast attributes. The mathematical expectation value of the score allows for a decomposition into reliability and resolution related terms, demonstrating a relationship between scoring rules and reliability/resolution. A similar decomposition holds for the empirical (i.e. sample average) score over an archive of forecast–observation pairs. This empirical decomposition though provides a too optimistic estimate of the potential score (i.e. the optimum score which could be obtained through recalibration), showing that a forecast assessment based solely on the empirical resolution and reliability terms will be misleading. The differences between the theoretical and empirical decomposition are investigated, and specific recommendations are given how to obtain better estimators of reliability and resolution in the case of the Brier and Ignorance scoring rule.