119 resultados para late Roman
Resumo:
Radiocarbon (carbon-14) data from the Aegean Bronze Age 1700-1400 B.C. show that the Santorini (Thera) eruption must have occurred in the late 17th century B.C. By using carbon-14 dates from the surrounding region, cultural phases, and Bayesian statistical analysis, we established a chronology for the initial Aegean Late Bronze Age cultural phases (Late Minoan IA, IB, and II). This chronology contrasts with conventional archaeological dates and cultural synthesis: stretching out the Late Minoan IA, IB, and II phases by similar to 100 years and requiring reassessment of standard interpretations of associations between the Egyptian and Near Eastern historical dates and phases and those in the Aegean and Cyprus in the mid-second millennium B.C.
Resumo:
Mineralised organic remains (including apple pips and cereal grains) collected during the ongoing excavations of Insula IX at the Roman town of Silchester, Hampshire have been analysed by a combination of SEM-EDX, powder XRD and IR spectroscopy. The experiments included mapping experiments using spatially resolved versions of each technique. IR and powder XRD mapping have been carried out utilising the synchrotron source at The Daresbury Laboratory oil stations 11.1 and 9.6. It is concluded that these samples are preserved by rapid mineralisation in the carbonate-substituted calcium phosphate mineral, dahllite. The rapid mineralisation leads to excellent preservation of the samples and a small crystal size. The value of IR spectroscopy in studying materials like this where the crystal size is small is demonstrated. A comparison is made between the excellent preservation seen in this context and the much poorer preservation of mineralised remains seen in Context 5276 or Cesspit 5251. Comments on the possible mechanism of mineralisation of these samples are made. (C) 2008 Elsevier B.V.. All rights reserved.
Resumo:
Deposits of coral-bearing, marine shell conglomerate exposed at elevations higher than 20 m above present-day mean sea level (MSL) in Bermuda and the Bahamas have previously been interpreted as relict intertidal deposits formed during marine isotope stage (MIS) I I, ca. 360-420 ka before present. On the strength of this evidence, a sea level highstand more than 20 m higher than present-day MSL was inferred for the MIS I I interglacial, despite a lack of clear supporting evidence in the oxygen-isotope records of deep-sea sediment cores. We have critically re-examined the elevated marine deposits in Bermuda, and find their geological setting, sedimentary relations, and microfaunal assemblages to be inconsistent with intertidal deposition over an extended period. Rather, these deposits, which comprise a poorly sorted mixture of reef, lagoon and shoreline sediments, appear to have been carried tens of meters inside karst caves, presumably by large waves, at some time earlier than ca. 310-360 ka before present (MIS 9-11). We hypothesize that these deposits are the result of a large tsunami during the mid-Pleistocene, in which Bermuda was impacted by a wave set that carried sediments from the surrounding reef platform and nearshore waters over the eolianite atoll. Likely causes for such a megatsunami are the flank collapse of an Atlantic island volcano, such as the roughly synchronous Julan or Orotava submarine landslides in the Canary Islands, or a giant submarine landslide on the Atlantic continental margin. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Our recent paper [McMurtry, G.M., Tappin, D.R., Sedwick, P.N., Wilkinson, I., Fietzkc, J. and Sellwood, B., 2007a. Elevated marine deposits in Bermuda record a late Quaternary megatsunami. Sedimentary Geol. 200, 155-165.] critically re-examined elevated marine deposits in Bermuda, and concluded that their geological setting, sedimentary relations, micropetrography and microfaunal assemblages were inconsistent with sustained intertidal deposition. Instead, we hypothesized that these deposits were the result of a large tsunami that impacted the Bermuda island platform during the mid-Pleistocene. Hearty and Olson [Hearty, P.J., and Olson, S.L., in press. Mega-highstand or megatsunami? Discussion of McMurtry et al. "Elevated marine deposits in Bermuda record a late Quaternary megatsunami": Sedimentary Geology, 200, 155-165, 2007 (Aug. 07). Sedimentary Geol. 200, 155-165.] in their response, attempt to refute our conclusions and claim the deposits to be the result of a +21 m eustatic sea level highstand during marine isotope stage (MIS) 11. In our reply we answer the issues raised by Hearty and Olson [Hearty, P.J., and Olson, S.L., in press. Mega-highstand or megatsunami? Discussion of McMurtry et al. "Elevated marine deposits in Bermuda record a late Quaternary megatsunami": Sedimentary Geology, 200, 155-165, 2007 (Aug. 07). Sedimentary Geol. 200,155-165.] and conclude that the Bermuda deposits do not provide unequivocal evidence of a prolonged +21 m eustatic sea level highstand. Rather, the sediments are more likely the result of a past megatsunami in the North Atlantic basin. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
During deglaciation of the North American Laurentide Ice Sheet large proglacial lakes developed in positions where proglacial drainage was impeded by the ice margin. For some of these lakes, it is known that subsequent drainage had an abrupt and widespread impact on North Atlantic Ocean circulation and climate, but less is known about the impact that the lakes exerted on ice sheet dynamics. This paper reports palaeogeographic reconstructions of the evolution of proglacial lakes during deglaciation across the northwestern Canadian Shield, covering an area in excess of 1,000,000 km(2) as the ice sheet retreated some 600 km. The interactions between proglacial lakes and ice sheet flow are explored, with a particular emphasis on whether the disposition of lakes may have influenced the location of the Dubawnt Lake ice stream. This ice stream falls outside the existing paradigm for ice streams in the Laurentide Ice Sheet because it did not operate over fined-grained till or lie in a topographic trough. Ice margin positions and a digital elevation model are utilised to predict the geometry and depth of proglacial takes impounded at the margin at 30-km increments during deglaciation. Palaeogeographic reconstructions match well with previous independent estimates of lake coverage inferred from field evidence, and results suggest that the development of a deep lake in the Thelon drainage basin may have been influential in initiating the ice stream by inducing calving, drawing down ice and triggering fast ice flow. This is the only location alongside this sector of the ice sheet where large (>3000 km(2)), deep lakes (similar to120 m) are impounded for a significant length of time and exactly matches the location of the ice stream. It is speculated that the commencement of calving at the ice sheet margin may have taken the system beyond a threshold and was sufficient to trigger rapid motion but that once initiated, calving processes and losses were insignificant to the functioning of the ice stream. It is thus concluded that proglacial lakes are likely to have been an important control on ice sheet dynamics during deglaciation of the Laurentide Ice Sheet. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Rapidly-flowing sectors of an ice sheet (ice streams) can play ail important role in abrupt climate change through tile delivery of icebergs and meltwater and tile Subsequent disruption of ocean thermohaline circulation (e.g., the North Atlantic's Heinrich events). Recently, several cores have been raised from the Arctic Ocean which document the existence of massive ice export events during tile Late Pleistocene and whose provenance has been linked to Source regions in the Canadian Arctic Archipelago. In this paper, satellite imagery is used to map glacial geomorphology in the vicinity of Victoria Island, Banks Island and Prince of Wales Island (Canadian Arctic) in order to reconstruct ice flow patterns in the highly complex glacial landscape. A total of 88 discrete flow-sets are mapped and of these, 13 exhibit the characteristic geomorphology of palaeo-ice streams (i.e., parallel patterns of large, highly elongated mega-scale glacial lineations forming a convergent flow pattern with abrupt lateral margins). Previous studies by other workers and cross-cutting relationships indicate that the majority of these ice streams are relatively young and operated during or immediately prior to deglaciation. Our new mapping, however, documents a large (> 700 km long; 110 km wide) and relatively old ice stream imprint centred in M'Clintock Channel and converging into Viscount Melville Sound. A trough mouth fan located on the continental shelf Suggests that it extended along M'Clure Strait and was grounded at tile shelf edge. The location of the M'Clure Strait Ice Stream exactly matches the Source area of 4 (possibly 5) major ice export events recorded in core PS 1230 raised from Fram Strait, the major ice exit for the Arctic Ocean. These ice export events occur at similar to 12.9, similar to 15.6, similar to 22 and 29.8 ka (C-14 yr BP) and we argue that they record vigorous episodes of activity of the M'Clure Strait Ice Stream. The timing of these events is remarkably similar to the North Atlantic's Heinrich events and we take this as evidence that the M'Clure Strait Ice Stream was also activated around the same time. This may hold important implications for tile cause of the North Atlantic's Heinrich events and hints at tile possibility of a pall-ice sheet response. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Glaciers occupy an area of similar to 1600 km(2) in the Caucasus Mountains. There is widespread evidence of retreat since the Little Ice Age, but an up-to-date regional assessment of glacier change is lacking. In this paper, satellite imagery (Landsat Thematic Mapper and Enhanced Thematic Mapper Plus) is used to obtain the terminus position of 113 glaciers in the central Caucasus in 1985 and 2000, using a manual delineation process based on a false-colour composite (bands 5, 4, 3). Measurements reveal that 94% of the glaciers have retreated, 4% exhibited no overall change and 2% advanced. The mean retreat rate equates to similar to 8 m a(-1), and maximum retreat rates approach similar to 38 m a(-1). The largest (>10 km(2)) glaciers retreated twice as much (similar to 12 m a(-1)) as the smallest (<1 km(2)) glaciers (similar to 6 m a(-1)), and glaciers at lower elevations generally retreated greater distances. Supraglacial debris cover has increased in association with glacier retreat, and the surface area of bare ice has reduced by similar to 10% between 1985 and 2000. Results are compared to declassified Corona imagery from the 1960s and 1970s and detailed field measurements and mass-balance data for Djankuat glacier, central Caucasus. It is concluded that the decrease in glacier area appears to be primarily driven by increasing temperatures since the 1970s and especially since the mid-1990s. Continued retreat could lead to considerable changes in glacier runoff, with implications for regional water resources.