172 resultados para inclusions in time scales


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report numerical results from a study of balance dynamics using a simple model of atmospheric motion that is designed to help address the question of why balance dynamics is so stable. The non-autonomous Hamiltonian model has a chaotic slow degree of freedom (representing vortical modes) coupled to one or two linear fast oscillators (representing inertia-gravity waves). The system is said to be balanced when the fast and slow degrees of freedom are separated. We find adiabatic invariants that drift slowly in time. This drift is consistent with a random-walk behaviour at a speed which qualitatively scales, even for modest time scale separations, as the upper bound given by Neishtadt’s and Nekhoroshev’s theorems. Moreover, a similar type of scaling is observed for solutions obtained using a singular perturbation (‘slaving’) technique in resonant cases where Nekhoroshev’s theorem does not apply. We present evidence that the smaller Lyapunov exponents of the system scale exponentially as well. The results suggest that the observed stability of nearly-slow motion is a consequence of the approximate adiabatic invariance of the fast motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common bias among global climate models (GCMs) is that they exhibit tropospheric southern annular mode (SAM) variability that is much too persistent in the Southern Hemisphere (SH) summertime. This is of concern for the ability to accurately predict future SH circulation changes, so it is important that it be understood and alleviated. In this two-part study, specifically targeted experiments with the Canadian Middle Atmosphere Model (CMAM) are used to improve understanding of the enhanced summertime SAM persistence. Given the ubiquity of this bias among comprehensive GCMs, it is likely that the results will be relevant for other climate models. Here, in Part I, the influence of climatological circulation biases on SAM variability is assessed, with a particular focus on two common biases that could enhance summertime SAM persistence: the too-late breakdown of the Antarctic stratospheric vortex and the equatorward bias in the SH tropospheric midlatitude jet. Four simulations are used to investigate the role of each of these biases in CMAM. Nudging and bias correcting procedures are used to systematically remove zonal-mean stratospheric variability and/or remove climatological zonal wind biases. The SAM time-scale bias is not alleviated by improving either the timing of the stratospheric vortex breakdown or the climatological jet structure. Even in the absence of stratospheric variability and with an improved climatological circulation, the model time scales are biased long. This points toward a bias in internal tropospheric dynamics that is not caused by the tropospheric jet structure bias. The underlying cause of this is examined in more detail in Part II of this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coupled climate dynamics underlying large, rapid, and potentially irreversible changes in ice cover are studied. A global atmosphere–ocean–sea ice general circulation model with idealized aquaplanet geometry is forced by gradual multi-millennial variations in solar luminosity. The model traverses a hysteresis loop between warm ice-free conditions and cold glacial conditions in response to ±5 W m−2 variations in global, annual-mean insolation. Comparison of several model configurations confirms the importance of polar ocean processes in setting the sensitivity and time scales of the transitions. A “sawtooth” character is found with faster warming and slower cooling, reflecting the opposing effects of surface heating and cooling on upper-ocean buoyancy and, thus, effective heat capacity. The transition from a glacial to warm, equable climate occurs in about 200 years. In contrast to the “freshwater hosing” scenario, transitions are driven by radiative forcing and sea ice feedbacks. The ocean circulation, and notably the meridional overturning circulation (MOC), does not drive the climate change. The MOC (and associated heat transport) collapses poleward of the advancing ice edge, but this is a purely passive response to cooling and ice expansion. The MOC does, however, play a key role in setting the time scales of the transition and contributes to the asymmetry between warming and cooling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiometric data in the visible domain acquired by satellite remote sensing have proven to be powerful for monitoring the states of the ocean, both physical and biological. With the help of these data it is possible to understand certain variations in biological responses of marine phytoplankton on ecological time scales. Here, we implement a sequential data-assimilation technique to estimate from a conventional nutrient–phytoplankton–zooplankton (NPZ) model the time variations of observed and unobserved variables. In addition, we estimate the time evolution of two biological parameters, namely, the specific growth rate and specific mortality of phytoplankton. Our study demonstrates that: (i) the series of time-varying estimates of specific growth rate obtained by sequential data assimilation improves the fitting of the NPZ model to the satellite-derived time series: the model trajectories are closer to the observations than those obtained by implementing static values of the parameter; (ii) the estimates of unobserved variables, i.e., nutrient and zooplankton, obtained from an NPZ model by implementation of a pre-defined parameter evolution can be different from those obtained on applying the sequences of parameters estimated by assimilation; and (iii) the maximum estimated specific growth rate of phytoplankton in the study area is more sensitive to the sea-surface temperature than would be predicted by temperature-dependent functions reported previously. The overall results of the study are potentially useful for enhancing our understanding of the biological response of phytoplankton in a changing environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the main differences in simulations of stratospheric climate and variability by models within the fifth Coupled Model Intercomparison Project (CMIP5) that have a model top above the stratopause and relatively fine stratospheric vertical resolution (high-top), and those that have a model top below the stratopause (low-top). Although the simulation of mean stratospheric climate by the two model ensembles is similar, the low-top model ensemble has very weak stratospheric variability on daily and interannual time scales. The frequency of major sudden stratospheric warming events is strongly underestimated by the low-top models with less than half the frequency of events observed in the reanalysis data and high-top models. The lack of stratospheric variability in the low-top models affects their stratosphere-troposphere coupling, resulting in short-lived anomalies in the Northern Annular Mode, which do not produce long-lasting tropospheric impacts, as seen in observations. The lack of stratospheric variability, however, does not appear to have any impact on the ability of the low-top models to reproduce past stratospheric temperature trends. We find little improvement in the simulation of decadal variability for the high-top models compared to the low-top, which is likely related to the fact that neither ensemble produces a realistic dynamical response to volcanic eruptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim  Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location  Europe. Methods  We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000 yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results  Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions  The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the sources of systematic errors in climate models is challenging because of coupled feedbacks and errors compensation. The developing seamless approach proposes that the identification and the correction of short term climate model errors have the potential to improve the modeled climate on longer time scales. In previous studies, initialised atmospheric simulations of a few days have been used to compare fast physics processes (convection, cloud processes) among models. The present study explores how initialised seasonal to decadal hindcasts (re-forecasts) relate transient week-to-month errors of the ocean and atmospheric components to the coupled model long-term pervasive SST errors. A protocol is designed to attribute the SST biases to the source processes. It includes five steps: (1) identify and describe biases in a coupled stabilized simulation, (2) determine the time scale of the advent of the bias and its propagation, (3) find the geographical origin of the bias, (4) evaluate the degree of coupling in the development of the bias, (5) find the field responsible for the bias. This strategy has been implemented with a set of experiments based on the initial adjustment of initialised simulations and exploring various degrees of coupling. In particular, hindcasts give the time scale of biases advent, regionally restored experiments show the geographical origin and ocean-only simulations isolate the field responsible for the bias and evaluate the degree of coupling in the bias development. This strategy is applied to four prominent SST biases of the IPSLCM5A-LR coupled model in the tropical Pacific, that are largely shared by other coupled models, including the Southeast Pacific warm bias and the equatorial cold tongue bias. Using the proposed protocol, we demonstrate that the East Pacific warm bias appears in a few months and is caused by a lack of upwelling due to too weak meridional coastal winds off Peru. The cold equatorial bias, which surprisingly takes 30 years to develop, is the result of an equatorward advection of midlatitude cold SST errors. Despite large development efforts, the current generation of coupled models shows only little improvement. The strategy proposed in this study is a further step to move from the current random ad hoc approach, to a bias-targeted, priority setting, systematic model development approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated whether developmental changes in cognitive control may underlie improvements of time-based prospective memory. Five-, 7-, 9-, and 11-year-olds (N = 166) completed a driving simulation task (ongoing task) in which they had to refuel their vehicle at specific points in time (PM task). The availability of cognitive control resources was experimentally manipulated by imposing a secondary task that required divided attention. Children completed the driving simulation task both in a full attention condition and a divided attention condition where they had to carry out a secondary task. Results revealed that older children performed better than younger children on the ongoing task and PM task. Children performed worse on the ongoing and PM tasks in the divided attention condition compared to the full attention condition. With respect to time monitoring in the final interval prior to the PM target, divided attention interacted with age such that older children’s time monitoring was more negatively affected by the secondary task compared to younger children. Results are discussed in terms of developmental shifts from reactive to proactive monitoring strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With a rapidly increasing fraction of electricity generation being sourced from wind, extreme wind power generation events such as prolonged periods of low (or high) generation and ramps in generation, are a growing concern for the efficient and secure operation of national power systems. As extreme events occur infrequently, long and reliable meteorological records are required to accurately estimate their characteristics. Recent publications have begun to investigate the use of global meteorological “reanalysis” data sets for power system applications, many of which focus on long-term average statistics such as monthly-mean generation. Here we demonstrate that reanalysis data can also be used to estimate the frequency of relatively short-lived extreme events (including ramping on sub-daily time scales). Verification against 328 surface observation stations across the United Kingdom suggests that near-surface wind variability over spatiotemporal scales greater than around 300 km and 6 h can be faithfully reproduced using reanalysis, with no need for costly dynamical downscaling. A case study is presented in which a state-of-the-art, 33 year reanalysis data set (MERRA, from NASA-GMAO), is used to construct an hourly time series of nationally-aggregated wind power generation in Great Britain (GB), assuming a fixed, modern distribution of wind farms. The resultant generation estimates are highly correlated with recorded data from National Grid in the recent period, both for instantaneous hourly values and for variability over time intervals greater than around 6 h. This 33 year time series is then used to quantify the frequency with which different extreme GB-wide wind power generation events occur, as well as their seasonal and inter-annual variability. Several novel insights into the nature of extreme wind power generation events are described, including (i) that the number of prolonged low or high generation events is well approximated by a Poission-like random process, and (ii) whilst in general there is large seasonal variability, the magnitude of the most extreme ramps is similar in both summer and winter. An up-to-date version of the GB case study data as well as the underlying model are freely available for download from our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical model embodying the concepts of the Cowley-Lockwood (Cowley and Lockwood, 1992, 1997) paradigm has been used to produce a simple Cowley– Lockwood type expanding flow pattern and to calculate the resulting change in ion temperature. Cross-correlation, fixed threshold analysis and threshold relative to peak are used to determine the phase speed of the change in convection pattern, in response to a change in applied reconnection. Each of these methods fails to fully recover the expansion of the onset of the convection response that is inherent in the simulations. The results of this study indicate that any expansion of the convection pattern will be best observed in time-series data using a threshold which is a fixed fraction of the peak response. We show that these methods used to determine the expansion velocity can be used to discriminate between the two main models for the convection response to a change in reconnection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A continuous band of high ion temperature, which persisted for about 8 h and zigzagged north-south across more than five degrees in latitude in the dayside (07:00– 15:00MLT) auroral ionosphere, was observed by the EISCAT VHF radar on 23 November 1999. Latitudinal gradients in the temperature of the F-region electron and ion gases (Te and Ti , respectively) have been compared with concurrent observations of particle precipitation and field-perpendicular convection by DMSP satellites, in order to reveal a physical explanation for the persistent band of high Ti , and to test the potential role of Ti and Te gradients as possible markers for the open-closed field line boundary. The north/south movement of the equatorward Ti boundary was found to be consistent with the contraction/expansion of the polar cap due to an unbalanced dayside and nightside reconnection. Sporadic intensifications in Ti , recurring on _10-min time scales, indicate that frictional heating was modulated by time-varying reconnection, and the band of high Ti was located on open flux. However, the equatorward Ti boundary was not found to be a close proxy of the open-closed boundary. The closest definable proxy of the open-closed boundary is the magnetosheath electron edge observed by DMSP. Although Te appears to be sensitive to magnetosheath electron fluxes, it is not found to be a suitable parameter for routine tracking of the open-closed boundary, as it involves case dependent analysis of the thermal balance. Finally, we have documented a region of newly-opened sunward convecting flux. This region is situated between the convection reversal boundary and the magnetosheath electron edge defining the openclosed boundary. This is consistent with a delay of several minutes between the arrival of the first (super-Alfv´enic) magnetosheath electrons and the response in the ionospheric convection, conveyed to the ionosphere by the interior Alfv´en wave. It represents a candidate footprint of the low-latitude boundary mixing layer on sunward convecting open flux

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in our understanding of the large-scale electric and magnetic fields in the coupled magnetosphere-ionosphere system are reviewed. The literature appearing in the period January 1991–June 1993 is sorted into 8 general areas of study. The phenomenon of substorms receives the most attention in this literature, with the location of onset being the single most discussed issue. However, if the magnetic topology in substorm phases was widely debated, less attention was paid to the relationship of convection to the substorm cycle. A significantly new consensus view of substorm expansion and recovery phases emerged, which was termed the ‘Kiruna Conjecture’ after the conference at which it gained widespread acceptance. The second largest area of interest was dayside transient events, both near the magnetopause and the ionosphere. It became apparent that these phenomena include at least two classes of events, probably due to transient reconnection bursts and sudden solar wind dynamic pressure changes. The contribution of both types of event to convection is controversial. The realisation that induction effects decouple electric fields in the magnetosphere and ionosphere, on time scales shorter than several substorm cycles, calls for broadening of the range of measurement techniques in both the ionosphere and at the magnetopause. Several new techniques were introduced including ionospheric observations which yield reconnection rate as a function of time. The magnetospheric and ionospheric behaviour due to various quasi-steady interplanetary conditions was studied using magnetic cloud events. For northward IMF conditions, reverse convection in the polar cap was found to be predominantly a summer hemisphere phenomenon and even for extremely rare prolonged southward IMF conditions, the magnetosphere was observed to oscillate through various substorm cycles rather than forming a steady-state convection bay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The implications of polar cap expansions, contractions and movements for empirical models of high-latitude plasma convection are examined. Some of these models have been generated by directly averaging flow measurements from large numbers of satellite passes or radar scans; others have employed more complex means to combine data taken at different times into large-scale patterns of flow. In all cases, the models have implicitly adopted the assumption that the polar cap is in steady state: they have all characterized the ionospheric flow in terms of the prevailing conditions (e.g. the interplanetary magnetic field and/or some index of terrestrial magnetic activity) without allowance for their history. On long enough time scales, the polar cap is indeed in steady state but on time scales shorter than a few hours it is not and can oscillate in size and position. As a result, the method used to combine the data can influence the nature of the convection reversal boundary and the transpolar voltage in the derived model. This paper discusses a variety of effects due to time-dependence in relation to some ionospheric convection models which are widely applied. The effects are shown to be varied and to depend upon the procedure adopted to compile the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent observations of ionospheric flows by ground-based radars, in particular by the European Incoherent Scatter (EISCAT) facility using the “Polar” experiment, together with previous analyses of the response of geomagnetic disturbance to variations of the interplanetary magnetic field (IMF), suggest that convection in the high-latitude ionosphere should be considered to be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail (mainly by dayside and nightside reconnection, respectively). The flows driven by dayside coupling are largest on the dayside, where they usually dominate, are associated with an expanding polar cap area, and are excited and decay on ∼10-min time scales following southward and northward turnings of the IMF, respectively. The latter finding indicates that the production of new open flux at the dayside magnetopause excites magnetospheric and ionospheric flow only for a short interval, ∼10 min, such that the flow driven by this source subsequently decays on this time scale unless maintained by the production of more open flux tubes. Correspondingly, the flows excited by the release of energy in the tail, mainly during substorms, are largest on the nightside, are associated with a contracting polar cap boundary, and are excited on ∼1-hour time scales following a southward turn of the IMF. In general, the total ionospheric flow will be the sum of the flows produced by these two sources, such that due to their different response times to changes in the IMF, considerable variations in the flow pattern can occur for a given direction and strength of the IMF. Consequently, the ionospheric electric field cannot generally be regarded as arising from a simple mapping of the solar wind electric field along open flux tubes.