79 resultados para fuzzy sample entropy
Resumo:
A series of imitation games involving 3-participant (simultaneous comparison of two hidden entities) and 2-participant (direct interrogation of a hidden entity) were conducted at Bletchley Park on the 100th anniversary of Alan Turing’s birth: 23 June 2012. From the ongoing analysis of over 150 games involving (expert and non-expert, males and females, adults and child) judges, machines and hidden humans (foils for the machines), we present six particular conversations that took place between human judges and a hidden entity that produced unexpected results. From this sample we focus on features of Turing’s machine intelligence test that the mathematician/code breaker did not consider in his examination for machine thinking: the subjective nature of attributing intelligence to another mind.
Resumo:
Infrared polarization and intensity imagery provide complementary and discriminative information in image understanding and interpretation. In this paper, a novel fusion method is proposed by effectively merging the information with various combination rules. It makes use of both low-frequency and highfrequency images components from support value transform (SVT), and applies fuzzy logic in the combination process. Images (both infrared polarization and intensity images) to be fused are firstly decomposed into low-frequency component images and support value image sequences by the SVT. Then the low-frequency component images are combined using a fuzzy combination rule blending three sub-combination methods of (1) region feature maximum, (2) region feature weighting average, and (3) pixel value maximum; and the support value image sequences are merged using a fuzzy combination rule fusing two sub-combination methods of (1) pixel energy maximum and (2) region feature weighting. With the variables of two newly defined features, i.e. the low-frequency difference feature for low-frequency component images and the support-value difference feature for support value image sequences, trapezoidal membership functions are proposed and developed in tuning the fuzzy fusion process. Finally the fused image is obtained by inverse SVT operations. Experimental results of visual inspection and quantitative evaluation both indicate the superiority of the proposed method to its counterparts in image fusion of infrared polarization and intensity images.
Resumo:
The self-assembly of proteins and peptides into b-sheet-rich amyloid fibers is a process that has gained notoriety because of its association with human diseases and disorders. Spontaneous self-assembly of peptides into nonfibrillar supramolecular structures can also provide a versatile and convenient mechanism for the bottom-up design of biocompatible materials with functional properties favoring a wide range of practical applications.[1] One subset of these fascinating and potentially useful nanoscale constructions are the peptide nanotubes, elongated cylindrical structures with a hollow center bounded by a thin wall of peptide molecules.[2] A formidable challenge in optimizing and harnessing the properties of nanotube assemblies is to gain atomistic insight into their architecture, and to elucidate precisely how the tubular morphology is constructed from the peptide building blocks. Some of these fine details have been elucidated recently with the use of magic-angle-spinning (MAS) solidstate NMR (SSNMR) spectroscopy.[3] MAS SSNMR measurements of chemical shifts and through-space interatomic distances provide constraints on peptide conformation (e.g., b-strands and turns) and quaternary packing. We describe here a new application of a straightforward SSNMR technique which, when combined with FTIR spectroscopy, reports quantitatively on the orientation of the peptide molecules within the nanotube structure, thereby providing an additional structural constraint not accessible to MAS SSNMR.
Resumo:
This paper considers the effect of using a GARCH filter on the properties of the BDS test statistic as well as a number of other issues relating to the application of the test. It is found that, for certain values of the user-adjustable parameters, the finite sample distribution of the test is far-removed from asymptotic normality. In particular, when data generated from some completely different model class are filtered through a GARCH model, the frequency of rejection of iid falls, often substantially. The implication of this result is that it might be inappropriate to use non-rejection of iid of the standardised residuals of a GARCH model as evidence that the GARCH model ‘fits’ the data.
Resumo:
Insect pollination benefits over three quarters of the world's major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios.
Resumo:
The projected hand illusion (PHI) is a variant of the rubber hand illusion (RHI), and both are commonly used to study mechanisms of self-perception. A questionnaire was developed by Longo et al. (2008) to measure qualitative changes in the RHI. Such psychometric analyses have not yet been conducted on the questionnaire for the PHI. The present study is an attempt to validate minor modifications of the questionnaire of Longo et al. to assess the PHI in a community sample (n = 48) and to determine the association with selected demographic (age, sex, years of education), cognitive (Digit Span), and clinical (psychotic-like experiences) variables. Principal components analysis on the questionnaire data extracted four components: Embodiment of “Other” Hand, Disembodiment of Own Hand, Deafference, and Agency—in both synchronous and asynchronous PHI conditions. Questions assessing “Embodiment” and “Agency” loaded onto orthogonal components. Greater illusion ratings were positively associated with being female, being younger, and having higher scores on psychotic-like experiences. There was no association with cognitive performance. Overall, this study confirmed that self-perception as measured with PHI is a multicomponent construct, similar in many respects to the RHI. The main difference lies in the separation of Embodiment and Agency into separate constructs, and this likely reflects the fact that the “live” image of the PHI presents a more realistic picture of the hand and of the stroking movements of the experimenter compared with the RHI.
Resumo:
In order to enhance the quality of care, healthcare organisations are increasingly resorting to clinical decision support systems (CDSSs), which provide physicians with appropriate health care decisions or recommendations. However, how to explicitly represent the diverse vague medical knowledge and effectively reason in the decision-making process are still problems we are confronted. In this paper, we incorporate semiotics into fuzzy logic to enhance CDSSs with the aim of providing both the abilities of describing medical domain concepts contextually and reasoning with vague knowledge. A semiotically inspired fuzzy CDSSs framework is presented, based on which the vague knowledge representation and reasoning process are demonstrated.
Resumo:
The concept of rationally designing MALDI matrices has been extended to the next “whole sample” level. These studies have revealed some unexpected and exploitable insights in improving MALDI sensitivity. It is shown that (i) additives which only provide additional laser energy absorption are best to be avoided; (ii) the addition of proton donors in the form of protonated weak bases can be highly beneficial; (iii) the addition of glycerol for coating crystalline samples is highly recommended. Overall, analytical sensitivity has been significantly increased compared to the current “gold” standards in MALDI MS, and new insights into the mechanisms and processes of MALDI have been gained.
Resumo:
The sustainable intelligent building is a building that has the best combination of environmental, social, economic and technical values. And its sustainability assessment is related with system engineering methods and multi-criteria decision-making. Therefore firstly, the wireless monitoring system of sustainable parameters for intelligent buildings is achieved; secondly, the indicators and key issues based on the “whole life circle” for sustainability of intelligent buildings are researched; thirdly, the sustainable assessment model identified on the structure entropy and fuzzy analytic hierarchy process is proposed.
Resumo:
Evidence is presented that the performance of the rationally designed MALDI matrix 4-chloro-α-cyanocinnamic acid (ClCCA) in comparison to its well-established predecessor α-cyano-4-hydroxycinnamic acid (CHCA) is significantly dependent on the sample preparation, such as the choice of the target plate. In this context, it becomes clear that any rational designs of MALDI matrices and their successful employment have to consider a larger set of physicochemical parameters, including sample crystallization and morphology/topology, in addition to parameters of basic (solution and/or gas-phase) chemistry.
Resumo:
The present systematic review was performed to assess consumer purchasing behaviour towards fish and seafood products in the wide context of developed countries. Web of Science, Scopus, ScienceDirect and Google Scholar engines were used to search the existing literature and a total of 49 studies were identified for inclusion. These studies investigated consumer purchasing behaviour towards a variety of fish and seafood products, in different countries and by means of different methodological approaches. In particular, the review identifies and discusses the main drivers and barriers of fish consumption as well as consumers’ preferences about the most relevant attributes of fish and seafood products providing useful insights for both practitioners and policy makers. Finally, main gaps of the existing literature and possible trajectories for future research are also discussed.
Resumo:
This paper proposes and tests a new framework for weighting recursive out-of-sample prediction errors according to their corresponding levels of in-sample estimation uncertainty. In essence, we show how to use the maximum possible amount of information from the sample in the evaluation of the prediction accuracy, by commencing the forecasts at the earliest opportunity and weighting the prediction errors. Via a Monte Carlo study, we demonstrate that the proposed framework selects the correct model from a set of candidate models considerably more often than the existing standard approach when only a small sample is available. We also show that the proposed weighting approaches result in tests of equal predictive accuracy that have much better sizes than the standard approach. An application to an exchange rate dataset highlights relevant differences in the results of tests of predictive accuracy based on the standard approach versus the framework proposed in this paper.
Resumo:
This paper presents an approximate closed form sample size formula for determining non-inferiority in active-control trials with binary data. We use the odds-ratio as the measure of the relative treatment effect, derive the sample size formula based on the score test and compare it with a second, well-known formula based on the Wald test. Both closed form formulae are compared with simulations based on the likelihood ratio test. Within the range of parameter values investigated, the score test closed form formula is reasonably accurate when non-inferiority margins are based on odds-ratios of about 0.5 or above and when the magnitude of the odds ratio under the alternative hypothesis lies between about 1 and 2.5. The accuracy generally decreases as the odds ratio under the alternative hypothesis moves upwards from 1. As the non-inferiority margin odds ratio decreases from 0.5, the score test closed form formula increasingly overestimates the sample size irrespective of the magnitude of the odds ratio under the alternative hypothesis. The Wald test closed form formula is also reasonably accurate in the cases where the score test closed form formula works well. Outside these scenarios, the Wald test closed form formula can either underestimate or overestimate the sample size, depending on the magnitude of the non-inferiority margin odds ratio and the odds ratio under the alternative hypothesis. Although neither approximation is accurate for all cases, both approaches lead to satisfactory sample size calculation for non-inferiority trials with binary data where the odds ratio is the parameter of interest.
Resumo:
Objective. Numerous studies have reported elevated levels of overgeneral autobiographical memory among depressed patients and also among those previously exposed to a traumatic event. No previous study has examined their joint association with overgeneral memory in a community sample, nor examined whether the associations are with both juvenile- and adult-onset depression. Methods. The current study examined the relative importance of exposure to childhood abuse and neglect in overgeneral memory of women with and without a history of major depressive disorder (MDD). Autobiographical memory test together with standardized interviews of childhood experiences and MDD were assessed in a risk-stratified community sample of 103 women aged 25–37. Results. Overgenerality in memory was associated with recalled childhood sexual abuse (CSA) but not other adversities. A history of CSA was predictive of overgeneral memory bias even in the absence of MDD. Our analyses indicated no significant association between a history of MDD and overgeneral memory in women who reported no CSA. However, overgeneral memory was increased in women who reported CSA and MDD with a significant difference found in relation to positive cues, the highest scores being seen among those with adult rather than juvenile-onset depression. Conclusions. The findings highlight the significance of CSA in predicting overgeneral memory, differential response in relation to positive and negative cue memories, and point to a specific role in the development of depression for overgeneral memory following CSA.
Resumo:
This study examines the effects of a multi-session Cognitive Bias Modification (CBM) program on interpretative biases and social anxiety in an Iranian sample. Thirty-six volunteers with a high score on social anxiety measures were recruited from a student population and randomly allocated into the experimental and control groups. In the experimental group, participants received 4 sessions of positive CBM for interpretative biases (CBM-I) over 2 weeks in the laboratory. Participants in the control condition completed a neutral task matched the active CBM-I intervention in format and duration but did not encourage positive disambiguation of socially ambiguous scenarios. The results indicated that after training the positive CBM-I group exhibited more positive (and less negative) interpretations of ambiguous scenarios and less social anxiety symptoms relative to the control condition at both 1 week post-test and 7 weeks follow-up. It is suggested that clinical trials are required to establish the clinical efficacy of this intervention for social anxiety.