200 resultados para fatty bodies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-chain fatty acids (SCFA) are formed from the fermentation of sugars by intestinal bacteria. Acetate is the most abundant SCFA, with lower amounts of propionate and butyrate formed. Propionate and butyrate are also formed from the products of carbohydrate fermentation by other bacteria, for example from lactate and acetate. SCFA play a role in regulating transit of digesta through the intestine, and butyrate formation is thought to be beneficial to health because butyrate decreases the risk of colon cancer. Major butyrate-producing species are among the most abundant present in the colon, including Roseburia and Faecalibacterium spp. Metabolism of longer-chain fatty acids occurs mainly by hydration or hydrogenation of unsaturated fatty acids. Hydroxystearic acids are formed in the intestine, particularly under disease conditions. Metabolism of linoleic acid results in the formation of conjugated linoleic acids (CLA) by several species, including Roseburia hominis and Roseburia inulinovorans. Enhancement of intestinal CLA formation, possibly using probiotics, may be useful in preventing or treating inflammatory bowel disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Dietary a-linolenic acid (ALA) can be converted to long-chain n-3 polyunsaturated fatty acids (PUFAs) in humans and may reproduce some of the beneficial effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular disease risk factors. Objective: This study aimed to compare the effects of increased dietary intakes of ALA and EPA+DHA on a range of atherogenic risk factors. Design: This was a placebo-controlled, parallel study involving 150 moderately hyperlipidemic subjects randomly assigned to 1 of 5 interventions: 0.8 or 1.7 g EPA+DHA/d, 4.5 or 9.5 g ALA/d, or an n-6 PUFA control for 6 mo. Fatty acids were incorporated into 25 g of fat spread and 3 capsules to be consumed daily. Results: The change in fasting or postprandial lipid, glucose, or insulin concentrations or in blood pressure was not significantly different after any of the n-3 PUFA interventions compared with the n-6 PUFA control. The mean (+/-SEM) change in fasting triacylglycerols after the 1.7-g/d EPA+DHA intervention (-7.7 +/- 4.99%) was significantly (P < 0.05) different from the change after the 9.5-g/d ALA intervention (10.9 +/- 4.5%). The ex vivo susceptibility of LDL to oxidation was higher after the 1.7-g/d EPA+DHA intervention than after the control and ALA interventions (P < 0.05). There was no significant change in plasma a-tocopherol concentrations or in whole plasma antioxidant status in any of the groups. Conclusion: At estimated biologically equivalent intakes, dietary ALA and EPA+DHA have different physiologic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary alpha-linolenic acid (ALA) can be converted to long-chain (n-3) PUFA in humans and may potentially reproduce the beneficial effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on risk factors for coronary heart disease (CHID). This study compared the effects of increased intakes of ALA with those of dietary EPA and DHA on blood coagulation and fibrinolytic factors in fasting subjects. A placebo-controlled, parallel study was conducted in 150 moderately hyperlipidemic subjects, age 25-72 y. Subjects were randomly assigned to one of five interventions and consumed a total intake of 0.8 or 1.7g/d EPA+DHA, 4.5 or 9.5g/d ALA or control (linoleic acid; LA) for 6 mo. Fatty acids were incorporated into 25 g of fat spread, which replaced the subject's normal spread and three capsules. Long-term supplementation with either dietary EPA+DHA or estimated biologically equivalent amounts of ALA did not affect factors VIIa, VIIc, VIIag, XIIa, XIIag, fibrinogen concentrations, plasminogen activator inhibitor-1 or tissue plasminogen activator activity compared with the control. (n-3) PUFA of plant or marine origin do not differ from one another or from LA in their effect on a range of blood coagulation and fibrinolytic factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Progression of the metabolic syndrome (MetS) is determined by genetic and environmental factors. Gene-environment interactions may be important in modulating the susceptibility to the development of MetS traits. Objective: Gene-nutrient interactions were examined in MetS subjects to determine interactions between single nucleotide polymorphisms (SNPs) in the adiponectin gene (ADIPOQ) and its receptors (ADIPOR1 and ADIPOR2) and plasma fatty acid composition and their effects on MetS characteristics. Design: Plasma fatty acid composition, insulin sensitivity, plasma adiponectin and lipid concentrations, and ADIPOQ, ADIPOR1, and ADIPOR2 SNP genotypes were determined in a cross-sectional analysis of 451 subjects with the MetS who participated in the LIPGENE (Diet, Genomics, and the Metabolic Syndrome: an Integrated Nutrition, Agro-food, Social, and Economic Analysis) dietary intervention study and were repeated in 1754 subjects from the LIPGENE-SU.VI.MAX (SUpplementation en VItamines et Mineraux AntioXydants) case-control study (http://www.ucd.ie/lipgene). Results: Single SNP effects were detected in the cohort. Triacylglycerols, nonesterified fatty acids, and waist circumference were significantly different between genotypes for 2 SNPs (rs266729 in ADIPOQ and rs10920533 in ADIPOR1). Minor allele homozygotes for both of these SNPs were identified as having degrees of insulin resistance, as measured by the homeostasis model assessment of insulin resistance, that were highly responsive to differences in plasma saturated fatty acids (SFAs). The SFA-dependent association between ADIPOR1 rs10920533 and insulin resistance was replicated in cases with MetS from a separate independent study, which was an association not present in controls. Conclusions: A reduction in plasma SFAs could be expected to lower insulin resistance in MetS subjects who are minor allele carriers of rs266729 in ADIPOQ and rs10920533 in ADIPOR1. Personalized dietary advice to decrease SFA consumption in these individuals may be recommended as a possible therapeutic measure to improve insulin sensitivity. This trial was registered at clinicaltrials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the volatile compound and fatty acid compositions of grilled beef from Aberdeen Angus and Holstein-Friesian steers slaughtered at 14 months, each breed fed from 6 months on either cereal-based concentrates or grass silage. Linoleic acid levels were higher in the muscle of concentrates-fed animals, which in the cooked meat resulted in increased levels of several compounds formed from linoleic acid decomposition. Levels of alpha-linolenic acid, and hence some volatile compounds derived from this fatty acid, were higher in the meat from the silage-fed steers. 1-Octen-3-ol, hexanal, 2-pentylfuran, trimethylamine, cis- and trans-2-octene and 4,5-dimethyl-2-pentyl-3-oxazoline were over 3 times higher in the steaks from the concentrates-fed steers, while grass-derived 1-phytene was present at much higher levels in the beef from the silage-fed steers. Only slight effects of breed were observed. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect on lamb muscle of five dietary supplements high in polyunsaturated fatty acids (PUFA) was measured. The supplements were linseed oil, fish oil, protected lipid (high in linoleic acid (C18:2 n-6) and alpha-linolenic acid (C18:3 n-3)), fish oil/marine algae (1:1), and protected lipid/marine algae (1:1). Eicosapentaenoic acid (C20:5 n-3) and docosahexaenoic acid (C22:6 n-3) were found in the highest amounts in the meat from lambs fed diets containing algae. Meat from lambs fed protected lipid had the highest levels of C18:2 n-6 and C18:3 n-3, due to the effectiveness of the protection system. In grilled meat from these animals, volatile compounds derived from n-3 fatty acids were highest in the meat from the lambs fed the fish oil/algae diet, whereas compounds derived from n-6 fatty acids were highest in the meat from the lambs fed the protected lipid diet. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the contribution of muscle components to the development of cooked meat odour in an aqueous model system using trained taste panels. Reaction mixtures were prepared with oleic, linoleic and linolenic acids with or without cysteine and ribose in a buffer with or without ferrous sulphate. Odour profiles were assessed and triangular tests were used to determine the ability of panellists to discriminate between mixtures. The presence of sugar and amino acid was highly detectable by panellists independently of the fatty acid considered (P < 0.001). However, the presence of C18:3 made differences. more obvious between mixtures than the presence of C18:1 or C18:2. `Meaty' notes were only associated with cysteine and ribose. `Fishy' notes were only apparent in C18:3 mixtures with or without sugar and amino acid, although the presence of cysteine and ribose decreased the perception. The addition of Fe+ +, a pro-oxidant present in the muscle, produced a reduction in the score of the attributes although the pattern was the same as when Fe was not used in the mixtures. Only `fishy' notes that were exclusively perceived in C18:3 mixtures showed a higher score in the presence of iron. Iron also produced a better discrimination in C18:3 mixtures, which were closely related to `grassy' notes in the presence of cysteine and ribose. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current intakes of very long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are low in most individuals living in Western countries. A good natural source of these fatty acids is seafood, especially oily fish. Fish oil capsules contain these fatty acids also. Very long-chain omega-3 fatty acids are readily incorporated from capsules into transport (blood lipids), functional (cell and tissue), and storage (adipose) pools. This incorporation is dose-dependent and follows a kinetic pattern that is characteristic for each pool. At sufficient levels of incorporation, EPA and DHA influence the physical nature of cell membranes and membrane protein-mediated responses, lipid-mediator generation, cell signaling, and gene expression in many different cell types. Through these mechanisms, EPA and DHA influence cell and tissue physiology and the way cells and tissues respond to external signals. In most cases the effects seen are compatible with improvements in disease biomarker profiles or health-related outcomes. As a result, very long-chain omega-3 fatty acids play a role in achieving optimal health and in protection against disease. Long-chain omega-3 fatty acids not only protect against cardiovascular morbidity but also against mortality. In some conditions, for example rheumatoid arthritis, they may be beneficial as therapeutic agents. On the basis of the recognized health improvements brought about by long-chain omega-3 fatty acids, recommendations have been made to increase their intake. The plant omega-3 fatty acid, alpha-linolenic acid (ALA), can be converted to EPA, but conversion to DHA appears to be poor in humans. Effects of ALA on human health-related outcomes appear to be due to conversion to EPA, and since this is limited, moderately increased consumption of ALA may be of little benefit in improving health outcomes compared with increased intake of preformed EPA + DHA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current intakes of very long chain omega-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DNA) are low in most individuals living in Western countries. A good natural source of these fatty acids is seafood, especially oily fish. Fish oil capsules contain these fatty acids too. Very long chain w-3 fatty acids are readily incorporated from capsules into transport, functional, and storage pools. This incorporation is dose-dependent and follows a kinetic pattern that is characteristic for each pool. At sufficient levels of incorporation, EPA and DHA influence the physical nature of cell membranes and membrane protein-mediated responses, eicosanoid generation, cell signaling and gene expression in many different cell types. Through these mechanisms, EPA and DHA influence cell and tissue physiology, and the way cells and tissues respond to external signals. In most cases, the effects seen are compatible with improvements in disease biomarker profiles or in health-related outcomes. As a result, very long chain omega-3 fatty acids play a role in achieving optimal health and in protection against disease. Long chain omega-3 fatty acids protect against cardiovascular morbidity and mortality, and might be beneficial in rheumatoid arthritis, inflammatory bowel diseases, childhood learning, and behavior, and adult psychiatric and neurodegenerative illnesses. DHA has an important structural role in the eye and brain, and its supply early in life is known to be of vital importance. On the basis of the recognized health improvements brought about by long chain omega-3 fatty acids, recommendations have been made to increase their intake. (C) 2009 International Union of Biochemistry and Molecular Biology, Inc. Volume 35, Number 3, May/June 2009, Pages 266-272. E-mail: pcc@soton.ac.uk

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated whether consuming dairy products naturally enriched in cis-9, trans-11 (c9,t11) conjugated linoleic acid (CLA) by modification of cattle feed increases the concentration of this isomer in plasma and cellular lipids in healthy men. The study had a double-blind cross-over design. Subjects aged 34-60 years consumed dairy products available from food retailers for 1 week and then either control (0.17 g c9,t11 CLA/d; 0.31 g trans-vaccenic acid (tVA)/d) or CLA-enriched (1.43 g c9,t11 CLA/d; 4.71 g tVA/d) dairy products for 6 weeks. After 7 weeks washout, this was repeated with the alternate products. c9,t11 CLA concentration in plasma lipids was lower after consuming the control products, which may reflect the two-fold greater c9,t11 CLA content of the commercial products. Consuming the CLA-enriched dairy products increased the c9,t11 CLA concentration in plasma phosphatidylcholine (PC) (38 %; P=0.035), triacylglycerol (TAG) (22 %; P < 0.0001) and cholesteryl esters (205 %; P < 0.0001), and in peripheral blood mononuclear cells (PBMC) (238 %; P < 0.0001), while tVA concentration was greater in plasma PC (65 %; P=0.035), TAG (98 %; P=0.001) and PBMC (84 %; P=0.004). Overall, the present study shows that consumption of naturally enriched dairy products in amounts similar to habitual intakes of these foods increased the c9,t11 CLA content of plasma and cellular lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of increased dietary intakes of alpha-linolenic acid (ALNA) or eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 2 months upon plasma lipid composition and capacity for conversion of ALNA to longer-chain metabolites was investigated in healthy men (52 (SD 12) years). After a 4-week baseline period when the subjects substituted a control spread, a test meal containing [U-C-13]ALNA (700 mg) was consumed to measure conversion to EPA, docosapentaenoic acid (DPA) and DHA over 48 h. Subjects were then randomised to one of three groups for 8 weeks before repeating the tracer study: (1) continued on same intake (control, n 5); (2) increased ALNA intake (10 g/d, n 4); (3) increased EPA+DHA intake (1.5 g/d, n 5). At baseline, apparent fractional conversion of labelled ALNA was: EPA 2.80, DPA 1.20 and DRA 0.04%. After 8 weeks on the control diet, plasma lipid composition and [C-13]ALNA conversion remained unchanged compared with baseline. The high-ALNA diet resulted in raised plasma triacylglycerol-EPA and -DPA concentrations and phosphatidylcholine-EPA concentration, whilst [C-13]ALNA conversion was similar to baseline. The high-(EPA+DHA) diet raised plasma phosphatidylcholine-EPA and -DHA concentrations, decreased [C-13]ALNA conversion to EPA (2-fold) and DPA (4-fold), whilst [C-13]ALNA conversion to DHA was unchanged. The dietary interventions did not alter partitioning of ALNA towards beta-oxidation. The present results indicate ALNA conversion was down-regulated by increased product (EPA+DHA) availability, but was not up-regulated by increased substrate (ALNA) consumption. This suggests regulation of ALNA conversion may limit the influence of variations in dietary n-3 fatty acid intake on plasma lipid compositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Indian Asians in Western countries have a higher rate of coronary artery disease than do the indigenous white populations, and this higher rate may be influenced by a dietary imbalance of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Objective: The objective of the study was to test the hypothesis that a high background dietary intake of n-6 PUFA attenuates the effects of fish-oil supplementation on insulin sensitivity and associated blood lipids of the metabolic syndrome. Design: Twenty-nine Indian Asian men were recruited to participate in a 12-wk dietary intervention trial. Volunteers were randomly assigned to receive either a moderate or a high n-6 PUFA diet featuring modified oils and spreads over a 6-wk period. After this 6-wk period, both groups were supplemented with 4.0 g fish oil/d (2.5 g eicosapentaenoic acid + docosahexaenoic acid) for an additional 6 wk in combination with the dietary treatment. Volunteers participated in a postprandial study and an insulin sensitivity test after the 6-wk dietary intervention and again after the fish-oil supplementation period. Results: There was no significant time X treatment interaction for blood lipids or insulin action after dietary intervention with the moderate or high n-6 PUFA diets in combination with fish oil. After the 6-wk period of fish oil supplementation, fasting and postprandial plasma triacylglycerol concentrations decreased significantly. Conclusion: The background dietary n-6 PUFA concentration did not modulate the effect of fish-oil supplementation on blood lipids or measures of insulin sensitivity in this ethnic group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction A high saturated fatty acid intake is a well recognized risk factor for coronary heart disease development. More recently a high intake of n-6 polyunsaturated fatty acids (PUFA) in combination with a low intake of the long chain n-3 PUFA, eicosapentaenoic acid and docosahexaenoic acid has also been implicated as an important risk factor. Aim To compare total dietary fat and fatty acid intake measured by chemical analysis of duplicate diets with nutritional database analysis of estimated dietary records, collected over the same 3-day study period. Methods Total fat was analysed using soxhlet extraction and subsequently the individual fatty acid content of the diet was determined by gas chromatography. Estimated dietary records were analysed using a nutrient database which was supplemented with a selection of dishes commonly consumed by study participants. Results Bland & Altman statistical analysis demonstrated a lack of agreement between the two dietary assessment techniques for determining dietary fat and fatty acid intake. Conclusion The lack of agreement observed between dietary evaluation techniques may be attributed to inadequacies in either or both assessment techniques. This study highlights the difficulties that may be encountered when attempting to accurately evaluate dietary fat intake among the population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study was analyzed the effect of crop year and harvesting time on the fatty acid composition of cv. Picual virgin olive oil. The study was carried out during the fruit ripening period for three crop seasons. The mean fatty acid composition of Picual oils was determined. The oils contained palmitic acid (11.9%), oleic acid (79.3%), and linoleic acid (2.95%). The content of palmitic acid and saturated fatty acids decreased during fruit ripening while oleic and linoleic acids increased. The amount of stearic and linolenic acids decreased. The amount of saturated acids, palmitic and stearic, and the polyunsaturated acids linoleic and linolenic was dependent on the time of harvest, whereas the amount of oleic acid varied with the crop year. The differences observed between crop years for both palmitic and linoleic acid may be explained by the differences in the temperature during oil biosynthesis and by the amount of summer rainfall for oleic acid content. A significant relationship was observed between the MUFA/PUFA ratio and the oxidative stability measured by the Rancimat method.