66 resultados para exploitation of the testing
Resumo:
Conceptualisations of disability that emphasise the contextual and cultural nature of disability and the embodiment of these within a national system of data collection present a number of challenges especially where this process is devolved to schools. The requirement for measures based on contextual and subjective experiences gives rise to particular difficulties in achieving parity in the way data is analysed and reported. This paper presents an account of the testing of a tool intended for use by schools as they collect data from parents to identify children who meet the criteria of disability established in Disability Discrimination Acts (DDAs). Data were validated through interviews with parents and teachers and observations of children and highlighted the pivotal role of the criterion of impact. The findings are set in the context of schools meeting their legal duties to identify disabled children and their support needs in a way that captures the complexity of disabled children’s school lives and provides useful and useable data.
Resumo:
Existing urban meteorological networks have an important role to play as test beds for inexpensive and more sustainable measurement techniques that are now becoming possible in our increasingly smart cities. The Birmingham Urban Climate Laboratory (BUCL) is a near-real-time, high-resolution urban meteorological network (UMN) of automatic weather stations and inexpensive, nonstandard air temperature sensors. The network has recently been implemented with an initial focus on monitoring urban heat, infrastructure, and health applications. A number of UMNs exist worldwide; however, BUCL is novel in its density, the low-cost nature of the sensors, and the use of proprietary Wi-Fi networks. This paper provides an overview of the logistical aspects of implementing a UMN test bed at such a density, including selecting appropriate urban sites; testing and calibrating low-cost, nonstandard equipment; implementing strict quality-assurance/quality-control mechanisms (including metadata); and utilizing preexisting Wi-Fi networks to transmit data. Also included are visualizations of data collected by the network, including data from the July 2013 U.K. heatwave as well as highlighting potential applications. The paper is an open invitation to use the facility as a test bed for evaluating models and/or other nonstandard observation techniques such as those generated via crowdsourcing techniques.
Resumo:
The increased availability of digital elevation models and satellite image data enable testing of morphometric relationships between sand dune variables (dune height, spacing and equivalent sand thickness), which were originally established using limited field survey data. These long-established geomorphological hypotheses can now be tested against very much larger samples than were possible when available data were limited to what could be collected by field surveys alone. This project uses ASTER Global Digital Elevation Model (GDEM) data to compare morphometric relationships between sand dune variables in the southwest Kalahari dunefield to those of the Namib Sand Sea, to test whether the relationships found in an active sand sea (Namib) also hold for the fixed dune system of the nearby southwest Kalahari. The data show significant morphometric differences between the simple linear dunes of the Namib sand sea and the southwest Kalahari; the latter do not show the expected positive relationship between dune height and spacing. The southwest Kalahari dunes show a similar range of dune spacings, but they are less tall, on average, than the Namib sand sea dunes. There is a clear spatial pattern to these morphometric data; the tallest and most closely spaced dunes are towards the southeast of the Kalahari dunefield; and this is where the highest values of equivalent sand thickness result. We consider the possible reasons for the observed differences and highlight the need for more studies comparing sand seas and dunefields from different environmental settings.
Resumo:
BACKGROUND/AIMS: Estrogens are important effectors of reproduction and are critical for upregulating female reproductive behavior or lordosis in females. In addition to the importance of transcriptional regulation of genes by 17beta-estradiol-bound estrogen receptors (ER), extranuclear signal transduction cascades such as protein kinase A (PKA) are also important in regulating female sexual receptivity. GPR30 (G-protein coupled receptor 30), also known as GPER1, a putative membrane ER (mER), is a G protein-coupled receptor that binds 17beta-estradiol with an affinity that is similar to that possessed by the classical nuclear ER and activates both PKA and extracellular-regulated kinase signaling pathways. The high expression of GPR30 in the ventromedial hypothalamus, a region important for lordosis behavior as well as kinase cascades activated by this receptor, led us to hypothesize that GPR30 may regulate lordosis behavior in female rodents. METHOD: In this study, we investigated the ability of G-1, a selective agonist of GPR30, to regulate lordosis in the female mouse by administering this agent prior to progesterone in an estradiol-progesterone priming paradigm prior to testing with stud males. RESULTS: As expected, 17beta-estradiol benzoate (EB), but not sesame oil, increased lordosis behavior in female mice. G-1 also increased lordosis behavior in female mice and decreased the number of rejective responses towards male mice, similar to the effect of EB. The selective GPR30 antagonist G-15 blocked these effects. CONCLUSION: This study demonstrates that activation of the mER GPR30 stimulates social behavior in a rodent model in a manner similar to EB.
Resumo:
Background Major Depressive Disorder (MDD) is among the most prevalent and disabling medical conditions worldwide. Identification of clinical and biological markers (“biomarkers”) of treatment response could personalize clinical decisions and lead to better outcomes. This paper describes the aims, design, and methods of a discovery study of biomarkers in antidepressant treatment response, conducted by the Canadian Biomarker Integration Network in Depression (CAN-BIND). The CAN-BIND research program investigates and identifies biomarkers that help to predict outcomes in patients with MDD treated with antidepressant medication. The primary objective of this initial study (known as CAN-BIND-1) is to identify individual and integrated neuroimaging, electrophysiological, molecular, and clinical predictors of response to sequential antidepressant monotherapy and adjunctive therapy in MDD. Methods CAN-BIND-1 is a multisite initiative involving 6 academic health centres working collaboratively with other universities and research centres. In the 16-week protocol, patients with MDD are treated with a first-line antidepressant (escitalopram 10–20 mg/d) that, if clinically warranted after eight weeks, is augmented with an evidence-based, add-on medication (aripiprazole 2–10 mg/d). Comprehensive datasets are obtained using clinical rating scales; behavioural, dimensional, and functioning/quality of life measures; neurocognitive testing; genomic, genetic, and proteomic profiling from blood samples; combined structural and functional magnetic resonance imaging; and electroencephalography. De-identified data from all sites are aggregated within a secure neuroinformatics platform for data integration, management, storage, and analyses. Statistical analyses will include multivariate and machine-learning techniques to identify predictors, moderators, and mediators of treatment response. Discussion From June 2013 to February 2015, a cohort of 134 participants (85 outpatients with MDD and 49 healthy participants) has been evaluated at baseline. The clinical characteristics of this cohort are similar to other studies of MDD. Recruitment at all sites is ongoing to a target sample of 290 participants. CAN-BIND will identify biomarkers of treatment response in MDD through extensive clinical, molecular, and imaging assessments, in order to improve treatment practice and clinical outcomes. It will also create an innovative, robust platform and database for future research.