86 resultados para ethylene-propylene terpolymer (EPDM)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A particulate microemulsion is generated in a simple two-component system comprising an amphiphilic copolymer (Pluronic P123) in mixtures with tannic acid. This is correlated to complexation between the poly(ethylene oxide) in the Pluronic copolymer and the multiple hydrogen bonding units in tannic acid which leads to the breakup of the ordered structure formed in gels of Pluronic copolymers, and the formation of dispersed nanospheres containing a bicontinuous internal structure. These novel nanoparticles termed emulsomes are self-stabilized by a coating layer of Pluronic copolymer. The microemulsion exhibits a pearlescent appearance due to selective light scattering from the emulsion droplets. This simple formulation based on a commercial copolymer and a biofunctional and biodegradable additive is expected to find applications in the fast moving consumer goods sector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Procedures for obtaining molecular orientational parameters from wide angle X-ray scattering patterns of samples of thermotropic liquid crystalline polymers are presented. The methods described are applied to an extrusion-aligned sample of a random copolyester of poly(ethylene terephthalate) (PET) and p-acetoxybenzoic acid. Values of the orientational parameters are obtained from both the interchain and intrachain maxima in the scattering pattern. The differences in the values so derived suggest some level of local rotational correlation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new approach that allows the determination of force-field parameters for the description of disordered macromolecular systems from experimental neutron diffraction data obtained over a large Q range. The procedure is based on a tight coupling between experimentally derived structure factors and computer modelling. We separate the molecular potential into non-interacting terms representing respectively bond stretching, angle bending and torsional rotation. The parameters for each of the potentials are extracted directly from experimental data through comparison of the experimental structure factor and those derived from atomistic level molecular models. The viability of these force fields is assessed by comparison of predicted large-scale features such as the characteristic ratio. The procedure is illustrated on molten poly(ethylene) and poly(tetrafluoroethylene).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical microstructures of thin sections of two liquid crystalline polymers are examined in the polarizing microscope. The polymers are random copolyesters based on hydroxybenzoic and hydroxynaphthoic acids (B-N), and hydroxybenzoic acid and ethylene terephthalate (B-ET). Sections cut from oriented samples, so as to include the extrusion direction, show microstructures in which there is no apparent preferred orientation of the axes describing the local optical anisotropy. The absence of preferred orientation in the microstructure, despite marked axial alignment of molecular chain segments as demonstrated by X-Ray diffraction, is interpreted in terms of the polymer having biaxial optical properties. The implication of optical biaxiality is that, although the mesophases are nematic, the orientation of the molecules is correlated about three (orthogonal) axes over distances greater than a micron. The structure is classified as a multiaxial nematic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determination of the local structure of a polymer glass by scattering methods is complex due to the number of spatial and orientational correlations, both from within the polymer chain (intrachain) and between neighbouring chains (interchain), from which the scattering arises. Recently considerable advances have been made in the structural analysis of relatively simple polymers such as poly(ethylene) through the use of broad Q neutron scattering data tightly coupled to atomistic modelling procedures. This paper presents the results of an investigation into the use of these procedures for the analysis of the local structure of a-PMMA which is chemically more complex with a much greater number of intrachain structural parameters. We have utilised high quality neutron scattering data obtained using SANDALS at ISIS coupled with computer models representing both the single chain and bulk polymer system. Several different modelling approaches have been explored which encompass such techniques as Reverse Monte Carlo refinement and energy minimisation and their relative merits and successes are discussed. These different approaches highlight structural parameters which any realistic model of glassy atactic PMMA must replicate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of VO(acac)(2) with the ONO-chelator obtained by the condensation of salicylaldehyde with 2-hydroxybenzoylhydrazine (H2L) in a monohydric alcohol. (ROH) medium produces VO(OR)L]-type oxidoalkoxido complexes (1-7) where R = Me, Pr-n, Pr-i, Bu-n, Bu-i, Bu-t and (n)Pen. All the complexes show the metal atom to have a five-coordinate square pyramidal environment, although in some complexes there is an additional weak V center dot center dot center dot O interaction in the sixth axial position. In acetonitrile medium and in the presence of a cis-diol (ethylene glycol), H2L reacts with VO(acac)(2) to form a six-coordinate complex, [VO(OCH2CH2OH)L] (8). When the reaction is carried out in acetonitrile medium in the presence of 2-amino ethanol, a completely different type of product containing the square pyramidal complex anion [VO2L](-) associated with the cation [NH3CH2CH2OH](+) is obtained. It was noted previously that on being reacted with monodentate nitrogen donor bases B (which are stronger than pyridine), the [VO(OR)L] complexes react to form the same complex anion [VO2L](-) associated with the corresponding cation [BH](+). The coordination environment around the V(V) acceptor center of the water soluble [BH](+)[VO2L](-)satisfies one of the several requirements for an efficient antidiabetic vanadium species such as water solubility, nature of donor atoms of the ligand and their disposition around the VO2+ acceptor center.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-complementary tweezer-molecules based on a naphthalenediimide core self-assemble into supramolecular dimers through mutual -stacking and hydrogen bonding. The resulting motif is extremely stable in solution (Ka = 105 M1), and its attachment to one terminal position of a poly(ethylene glycol) chain leads to a doubling of the polymer's apparent molecular weight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores the potential of polysialic acid (PSA) as a carrier for low molecular weight anticancer drugs. A PSAepirubicin (Epi) conjugate was synthesized and compared against Epi conjugates containing established carriers, namely: N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers, poly(ethylene glycol) (PEG) and polyglutamic acid (PGA). Biological assessments in the breast cancer cell line MCF-7 and in the anthracycline resistant MCF-7/DX showed that the PSAEpi conjugate had the highest activity (40% and 30% cell death in the two cell lines at 1 mM Epi equiv., respectively). FACS studies confirmed internalization of all conjugates by cholesterol-dependent endocytosis. PSAEpi showed release of Epi (40% at 5 h) when incubated with lysosome extracts. In vivo evaluation showed that all conjugates had a significantly longer half-life compared to free Epi. This study also allowed an investigation on the effect of the polymeric carrier on the biological activity of a conjugate, with the biodegradability of the carrier emerging as an important feature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climacteric and non-climacteric fruits have traditionally been viewed as representing two distinct programmes of ripening associated with differential respiration and ethylene hormone effects. In climacteric fruits, such as tomato and banana, the ripening process is marked by increased respiration and is induced and co-ordinated by ethylene, while in non-climacteric fruits, such as strawberry and grape, it is controlled by an ethylene-independent process with little change in respiration rate. The two contrasting mechanisms, however, both lead to texture, colour, and flavour changes that probably reflect some common programmes of regulatory control. It has been shown that a SEPALLATA(SEP)4-like gene is necessary for normal ripening in tomato. It has been demonstrated here that silencing a fruit-related SEP1/2-like (FaMADS9) gene in strawberry leads to the inhibition of normal development and ripening in the petal, achene, and receptacle tissues. In addition, analysis of transcriptome profiles reveals pleiotropic effects of FaMADS9 on fruit development and ripening-related gene expression. It is concluded that SEP genes play a central role in the developmental regulation of ripening in both climacteric and non-climacteric fruits. These findings provide important information to extend the molecular control of ripening in a non-climacteric fruit beyond the limited genetic and cultural options currently available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly and bioactivity of the peptidepolymer conjugate DGRFFFPEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol-1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of b-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFFPEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the coreshell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystal engineering principles were used to design three new co-crystals of paracetamol. A variety of potential cocrystal formers were initially identified from a search of the Cambridge Structural Database for molecules with complementary hydrogen-bond forming functionalities. Subsequent screening by powder X-ray diffraction of the products of the reaction of this library of molecules with paracetamol led to the discovery of new binary crystalline phases of paracetamol with trans-1,4- diaminocyclohexane (1); trans-1,4-di(4-pyridyl)ethylene (2); and 1,2-bis(4-pyridyl)ethane (3). The co-crystals were characterized by IR spectroscopy, differential scanning calorimetry, and 1H NMR spectroscopy. Single crystal X-ray structure analysis reveals that in all three co-crystals the co-crystal formers (CCF) are hydrogen bonded to the paracetamol molecules through OHN interactions. In co-crystals (1) and (2) the CCFs are interleaved between the chains of paracetamol molecules, while in co-crystal (3) there is an additional NHN hydrogen bond between the two components. A hierarchy of hydrogen bond formation is observed in which the best donor in the system, the phenolic OH group of paracetamol, is preferentially hydrogen bonded to the best acceptor, the basic nitrogen atom of the co-crystal former. The geometric aspects of the hydrogen bonds in co-crystals 13 are discussed in terms of their electrostatic and charge-transfer components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here a unique chiral hybrid gallium sulfide, [NC2H8]2[Ga10S16(N2C12H12)(NC2H7)2] 1, consisting of helical chains of organically-functionalised supertetrahedral clusters which form quadruple-stranded helical nanotubes of ca. 3 nm diameter. This material therefore consists of discrete metal-organic nanotubes which, to the best of our knowledge, are extremely rare. Whilst solvothermal reactions involving 1,2-di(4-pyridyl)ethylene (DPE) resulted in the formation of such single-walled chiral nanotubes, the use of longer 4,4-trimethylenedipyridine (TMP) ligands resulted in the synthesis of a two-dimensional hybrid gallium sulfide, [C5H6N]3[Ga10S16(OH)(N2C13H14)] 2 in which, for the first time, inorganic and organic linkages between supertetrahedral clusters coexist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the molecular biological changes underlying the process of embryogenesis is important for the improvement of somatic embryogenesis of coconut. Among the transcription factors that control the transition from vegetative to embryogenic growth, members of APETALA2/Ethylene-responsive element binding protein domain family play an important role in promoting embryo development. Significant insights into the role of AP2 genes have been obtained by the ectopic expression of AP2 sub family genes in transgenic Arabidopsis. A homolog of the AINTEGUMENTA-like gene that encodes the two AP2 domains and the linker region was identified in the coconut genome. Phylogenetic analysis showed that this gene, CnANT, encodes a protein that branched with BABY BOOM/PLETHORA clade in the AINTEGUMENTA-like major clade and was similar to the oil palm EgAP2-1 protein. According to real time RT-PCR results, higher expression of CnANT was observed in more mature zygotic embryos. Also, high CnANT expression was recorded in embryogenic callus compared to other stages of somatic embryogenesis. We examined the effect of ectopic CnANT expression on the development and regenerative capacity of transgenic Arabidopsis. Overexpression of CnANT in Arabidopsis induced hormone free regeneration of explants. Furthermore, ectopic expression of CnANT enhanced regeneration in vitro and suggested a role for this gene in cell proliferation during in vitro culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(Nvinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.