68 resultados para electron beam lithography
Resumo:
We report observations of the cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) VHF radar at Tromso and the EISCAT Svalbard radar (ESR). We compare them with observations of the dayside auroral luminosity, as seen by meridian scanning photometers at Ny Alesund and of HF radar backscatter, as observed by the CUTLASS radar. We study the response to an interval of about one hour when the interplanetary magnetic field (IMF), monitored by the WIND and ACE spacecraft, was southward. The cusp/cleft aurora is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data. Initial conditions were characterised by a northward-directed IMF and cusp/cleft aurora poleward of the ESR. A strong southward turning then occurred, causing an equatorward motion of the cusp/cleft aurora. Within the equatorward expanding, southward-IMF cusp/cleft, the ESR observed structured and elevated plasma densities and ion and electron temperatures. Cleft ion fountain upflows were seen in association with elevated ion temperatures and rapid eastward convection, consistent with the magnetic curvature force on newly opened held lines for the observed negative IMF B-y. Subsequently, the ESR beam remained immediately poleward of the main cusp/cleft and a sequence of poleward-moving auroral transients passed over it. After the last of these, the ESR was in the polar cap and the radar observations were characterised by extremely low ionospheric densities and downward field-aligned flows. The IMF then turned northward again and the auroral oval contracted such that the ESR moved back into the cusp/cleft region. For the poleward-retreating northward-IMF cusp/cleft, the convection flows were slower, upflows were weaker and the electron density and temperature enhancements were less structured. Following the northward turning, the bands of high electron temperature and cusp/cleft aurora bifurcated, consistent with both subsolar and lobe reconnection taking place simultaneously. The present paper describes the large-scale behaviour of the ionosphere during this interval, as observed by a powerful combination of instruments. Two companion papers, by Lockwood et al. (2000) and Thorolfsson et al. (2000), both in this issue, describe the detailed behaviour of the poleward-moving transients observed during the interval of southward B-z, and explain their morphology in the context of previous theoretical work.
Resumo:
The effects on the horizontal ionospheric velocity vectors deduced from radar beam-swinging experiments, which occur when changes in the flow take place on short time scales compared with the experiment cycle time, are analysed in detail. The further complications which arise in the interpretation of beam-swinging data, due to longitudinal gradients in the flow and to field-aligned flows, are also considered. It is concluded that these effects are unlikely to seriously compromise statistical determinations of the response time of the flow, e.g. to changes in the north-south component of the IMF, such as have been recently reported by Etemadiet al. (1988, Planet. Space Sci.36, 471), using EISCAT ‘Polar’ data.
Resumo:
Three rapid, poleward bursts of plasma flow, observed by the U.K.-POLAR EISCAT experiment, are studied in detail. In all three cases the large ion velocities (> 1 kms−1) are shown to drive the ion velocity distribution into a non-Maxwellian form, identified by the characteristic shape of the observed spectra and the fact that analysis of the spectra with the assumption of a Maxwellian distribution leads to excessive rises in apparent ion temperature, and an anticorrelation of apparent electron and ion temperatures. For all three periods the total scattered power is shown to rise with apparent ion temperature by up to 6 dB more than is expected for an isotropic Maxwellian plasma of constant density and by an even larger factor than that expected for non-thermal plasma. The anomalous increases in power are only observed at the lower altitudes (< 300 km). At greater altitudes the rise in power is roughly consistent with that simulated numerically for homogeneous, anisotropic, non-Maxwellian plasma of constant density, viewed using the U.K.-POLAR aspect angle. The spectra at times of anomalously high power are found to be asymmetric, showing an enhancement near the downward Doppler-shifted ion-acoustic frequency. Although it is not possible to eliminate completely rapid plasma density fluctuations as a cause of these power increases, such effects cannot explain the observed spectra and the correlation of power and apparent ion temperature without an unlikely set of coincidences. The observations are made along a beam direction which is as much as 16.5° from orthogonality with the geomagnetic field. Nevertheless, some form of coherent-like echo contamination of the incoherent scatter spectrum is the most satisfactory explanation of these data.
Resumo:
Photosensitized oxidation of guanine is an important route to DNA damage. Ruthenium polypyridyls are very useful photosensitizers as their reactivity and DNA-binding properties are readily tunable. Here we show a strong difference in the reactivity of the two enantiomers of [Ru(TAP)2(dppz)]2+, by using time-resolved visible and IR spectroscopy. This reveals that the photosensitized one-electron oxidation of guanine in three oligonucleotide sequences proceeds with similar rates and yields for bound delta-[Ru(TAP)2(dppz)]2+, whereas those for the lambda enantiomer are very sensitive to base sequence. It is proposed that these differences are due to preferences of each enantiomer for different binding sites in the duplex.
Resumo:
A two-component, supramolecular polymer blend has been designed using a novel π-electron rich bisperylene- terminated polyether. This polymer is able to self-assemble through electronically complementary π–π stacking interactions with a π-electron-deficient chain-folding polydiimide to afford thermally healable polymer blends. Model compounds were developed to assess the suitability of the deep green complexes formed between perylene residues and chain-folding bis-diimides for use in polymer blends. The polymer blends thus synthesised were elastomeric in nature and demonstrated healable properties as demonstrated by scanning electron microscopy. Healing was observed to occur rapidly at ca. 75 degC, and excellent healing efficiencies were found by tensometric and rheometric analyses. These tuneable, stimuli-responsive, supramolecular polymer blends are compared to related healable blends featuring pyrene-terminated oligomers.
Resumo:
To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.