127 resultados para compartment syndrome
Resumo:
Long-chain acyl CoA synthetase 1 (ACSL1) plays an important role in fatty acid metabolism and triacylglycerol (TAG) synthesis. Disturbance of these pathways may result in dyslipidemia and insulin resistance, hallmarks of the metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genetic determinants of lipid metabolism to affect MetS risk. We investigated the relationship between ACSL1 polymorphisms (rs4862417, rs6552828, rs13120078, rs9997745, and rs12503643) and MetS risk and determined potential interactions with dietary fat in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1,754). GG homozygotes for rs9997745 had increased MetS risk {odds ratio (OR) 1.90 [confidence interval (CI) 1.15, 3.13]; P = 0.01}, displayed elevated fasting glucose (P = 0.001) and insulin concentrations (P = 0.002) and increased insulin resistance (P = 0.03) relative to the A allele carriers. MetS risk was modulated by dietary fat, whereby the risk conferred by GG homozygosity was abolished among individuals consuming either a low-fat (<35% energy) or a high-PUFA diet (>5.5% energy). In conclusion, ACSL1 rs9997745 influences MetS risk, most likely via disturbances in fatty acid metabolism, which was modulated by dietary fat consumption, particularly PUFA intake, suggesting novel gene-nutrient interactions.
Effects of dietary fat modification on skeletal muscle fatty acid handling in the metabolic syndrome
Resumo:
Objective: In the metabolic syndrome (MetS), increased fat storage in ‘nonadipose’ tissues such as skeletal muscle may be related to insulin resistance (‘lipid overflow’ hypothesis). The objective of this study was to examine the effects of dietary fat modification on the capacity of skeletal muscle to handle dietary and endogenous fatty acids (FAs). Subjects and Methods: In total, 29 men with the MetS were randomly assigned to one of four diets for 12 weeks: a high-fat saturated fat diet (HSFA, n=6), a high-fat monounsaturated fat diet (HMUFA, n=7) and two low-fat high-complex carbohydrate diets supplemented with (LFHCCn−3, n=8) or without (LFHCC, n=8) 1.24 g per day docosahexaenoic and eicosapentaenoic acid. Fasting and postprandial skeletal muscle FA handling was examined by measuring arteriovenous concentration differences across the forearm muscle. [2H2]-palmitate was infused intravenously to label endogenous triacylglycerol (TAG) and free fatty acids in the circulation and subjects received a high-fat mixed meal (2.6 MJ, 61 energy% fat) containing [U-13C]-palmitate to label chylomicron-TAG. Results: Postprandial circulating TAG concentrations were significantly lower after dietary intervention in the LFHCCn−3 group compared to the HSFA group (ΔiAUC −139±67 vs 167±70 μmol l−1 min−1, P=0.009), together with decreased concentrations of [U-13C]-labeled TAG, representing dietary FA. Fasting TAG clearance across forearm muscle was decreased on the HSFA diet, whereas no differences were observed in postprandial forearm muscle FA handling between diets. Conclusion: Chronic manipulation of dietary fat quantity and quality did not affect forearm muscle FA handling in men with the MetS. Postprandial TAG concentrations decreased on the LFHCCn−3 diet, which could be (partly) explained by lower concentration of dietary FA in the circulation.
Resumo:
Hypertension is a key feature of the metabolic syndrome. Lifestyle and dietary changes may affect blood pressure (BP), but the knowledge of the effects of dietary fat modification in subjects with the metabolic syndrome is limited. The objective of the present study was to investigate the effect of an isoenergetic change in the quantity and quality of dietary fat on BP in subjects with the metabolic syndrome. In a 12-week European multi-centre, parallel, randomised controlled dietary intervention trial (LIPGENE), 486 subjects were assigned to one of the four diets distinct in fat quantity and quality: two high-fat diets rich in saturated fat or monounsaturated fat and two low-fat, high-complex carbohydrate diets with or without 1·2 g/d of very long-chain n-3 PUFA supplementation. There were no overall differences in systolic BP (SBP), diastolic BP or pulse pressure (PP) between the dietary groups after the intervention. The high-fat diet rich in saturated fat had minor unfavourable effects on SBP and PP in males.
Resumo:
Background and aims The Metabolic Syndrome (MetS) is associated with increased cardiovascular risk. Circulating microparticles (MP) are involved in the pathogenesis of atherothrombotic disorders and are raised in individual with CVD. We measured their level and cellular origin in subjects with MetS and analyzed their associations with 1/anthropometric and biological parameters of MetS, 2/inflammation and oxidative stress markers. Methods and results Eighty-eight subjects with the MetS according to the NCEP-ATPIII definition were enrolled in a bicentric study and compared to 27 healthy controls. AnnexinV-positive MP (TMP), MP derived from platelets (PMP), erythrocytes (ErMP), endothelial cells (EMP), leukocytes (LMP) and granulocytes (PNMP) were determined by flow cytometry. MetS subjects had significantly higher counts/μl of TMP (730.6 ± 49.7 vs 352.8 ± 35.6), PMP (416.0 ± 43.8 vs 250.5 ± 23.5), ErMP (243.8 ± 22.1 vs 73.6 ± 19.6) and EMP (7.8 ± 0.8 vs 4.0 ± 1.0) compared with controls. LMP and PNMP were not statistically different between groups. Multivariate analysis demonstrated that each criterion for the MetS influenced the number of TMP. Waist girth was a significant determinant of PMP and EMP level and blood pressure was correlated with EMP level. Glycemia positively correlated with PMP level whereas dyslipidemia influenced EMP and ErMP levels. Interestingly, the oxidative stress markers, plasma glutathione peroxydase and urinary 8-iso-prostaglandin F2 α, independently influenced TMP and PMP levels whereas inflammatory markers did not, irrespective of MP type. Conclusion Increased levels of TMP, PMP, ErMP and EMP are associated with individual metabolic abnormalities of MetS and oxidative stress. Whether MP assessment may represent a marker for risk stratification or a target for pharmacological intervention deserves further investigation.
Resumo:
OBJECTIVE To investigate the relation between serum concentration of 25-hydroxyvitamin D [25(OH)D] and insulin action and secretion. RESEARCH DESIGN AND METHODS In a cross-sectional study of 446 Pan-European subjects with the metabolic syndrome, insulin action and secretion were assessed by homeostasis model assessment (HOMA) indexes and intravenous glucose tolerance test to calculate acute insulin response, insulin sensitivity, and disposition index. Serum 25(OH)D was measured by high-performance liquid chromatography/mass spectrometry. RESULTS The 25(OH)D3 concentration was 57.1 ± 26.0 nmol/l (mean ± SD), and only 20% of the subjects had 25(OH)D3 levels ≥75 nmol/l. In multiple linear analyses, 25(OH)D3 concentrations were not associated with parameters of insulin action or secretion after adjustment for BMI and other covariates. CONCLUSIONS In a large sample of subjects with the metabolic syndrome, serum concentrations of 25(OH)D3 did not predict insulin action or secretion. Clear evidence that D vitamin status directly influences insulin secretion or action is still lacking.
Resumo:
The aim of this review article is to provide an overview of the role of pigs as a biomedical model for humans. The usefulness and limitations of porcine models have been discussed in terms of metabolic, cardiovascular, digestive and bone diseases in humans. Domestic pigs and minipigs are the main categories of pigs used as biomedical models. One drawback of minipigs is that they are in short supply and expensive compared with domestic pigs, which in contrast cost more to house, feed and medicate. Different porcine breeds show different responses to the induction of specific diseases. For example, ossabaw minipigs provide a better model than Yucatan for the metabolic syndrome as they exhibit obesity, insulin resistance and hypertension, all of which are absent in the Yucatan. Similar metabolic/physiological differences exist between domestic breeds (e.g. Meishan v. Pietrain). The modern commercial (e.g. Large White) domestic pig has been the preferred model for developmental programming due to the 2- to 3-fold variation in body weight among littermates providing a natural form of foetal growth retardation not observed in ancient (e.g. Meishan) domestic breeds. Pigs have been increasingly used to study chronic ischaemia, therapeutic angiogenesis, hypertrophic cardiomyopathy and abdominal aortic aneurysm as their coronary anatomy and physiology are similar to humans. Type 1 and II diabetes can be induced in swine using dietary regimes and/or administration of streptozotocin. Pigs are a good and extensively used model for specific nutritional studies as their protein and lipid metabolism is comparable with humans, although pigs are not as sensitive to protein restriction as rodents. Neonatal and weanling pigs have been used to examine the pathophysiology and prevention/treatment of microbial-associated diseases and immune system disorders. A porcine model mimicking various degrees of prematurity in infants receiving total parenteral nutrition has been established to investigate gut development, amino acid metabolism and non-alcoholic fatty liver disease. Endoscopic therapeutic methods for upper gastrointestinal tract bleeding are being developed. Bone remodelling cycle in pigs is histologically more similar to humans than that of rats or mice, and is used to examine the relationship between menopause and osteoporosis. Work has also been conducted on dental implants in pigs to consider loading; however with caution as porcine bone remodels slightly faster than human bone. We conclude that pigs are a valuable translational model to bridge the gap between classical rodent models and humans in developing new therapies to aid human health.
Resumo:
L’objectif de l’étude est de mieux cerner les particularités acoustiques de la prosodie d’enfants porteurs du SW de langue maternelle anglaise et de langue maternelle française. Des productions spontanées ont été recueillies à l’aide de la tâche de narration « Grenouille, où es-tu ? » (Mayer, 1969). La prosodie des enfants SW est comparée à celle de deux groupes typiques, un de même âge chronologique et un de même âge développemental que le groupe avec SW La population se compose de 1. 7 enfants SW de langue française âgés entre 6 ans et 13 ans 7 mois, appariés à deux groupes typiques et 2. 13 enfants SW de langue anglaise âgés entre 6 ans et 13 ans 11 mois, appariés à deux groupes typiques. Notre analyse porte sur un paramètre acoustique de la prosodie des enfants avec SW : la Variation de la Fréquence Fondamentale. Les résultats sont discutés sur les points suivants : 1. les différences et similitudes entre les profils prosodiques des enfants avec SW et des enfants typiques de même âge chronologique ou développemental, en langue anglaise et en langue française, 2. les différences entre les enfants avec SWde langue maternelle anglaise et les enfants avec SWde langue maternelle française et 3. le développement prosodique observé chez les enfants avec SW. (For English abstract see "Additional Information")
Resumo:
This paper reports the pitch range and vowel duration data from a group of children with Williams syndrome (WS) in comparison with a group of typically developing children matched for chronological age (CA) and a group matched for receptive language abilities (LA). It is found that the speech of the WS group has a greater pitch range and that vowels tend to be longer in duration than in the speech of the typically developing children. These findings are in line with the impressionistic results reported by Reilly, Klima and Bellugi [17].
Resumo:
Aims/hypothesis: Variants of the TCF7L2 gene predict the development of type 2 diabetes mellitus (T2DM). We investigated the associations between gene variants of TCF7L2 and clinical features of the metabolic syndrome (MetS) (an entity often preceeding T2DM), and their interaction with non-genetic factors, including plasma saturated fatty acids (SFA) concentration and insulin resistance (IR). Methods: Fasting lipid profiles, insulin sensitivity, insulin secretion, anthropometrics, blood pressure and 10 gene variations of the TCF7L2 gene were determined in 450 subjects with MetS. Results: Several single nucleotide polymorphisms (SNP) showed phenotypic associations independent of SFA or IR. Carriers of the rare T allele of rs7903146, and of three other SNPs in linkage disequilibrium with rs7903146, had lower blood pressure and insulin secretion. High IR and the presence of the T-allele of rs7903146 acted synergistically to define those with reduced insulin secretion. Carriers of the minor allele of rs290481 exhibited an altered lipid profile, with increased plasma levels of apolipoprotein B, non-esterified fatty acids, cholesterol and apolipoprotein B in triglyceride rich lipoproteins, and LDL cholesterol. Carriers of the minor allele of rs11196224 that had higher plasma SFA levels showed elevated procoagulant/proinflammatory biomarkers, impaired insulin secretion and increased IR, whereas carriers of the minor allele of rs17685538 with high plasma SFA levels exhibited higher blood pressure. Conclusions/interpretation: SNP in the TCF7L2 gene are associated with differences in insulin secretion, blood pressure, blood lipids and coagulation in MetS patients, and may be modulated by SFA in plasma or IR.
Resumo:
Background and Objectives: People with Williams syndrome (WS) have been reported by their carers to have problems with attention, anxiety and social relationships. People with WS have been shown to report their anxieties. This study extends our knowledge of how people with WS see themselves in terms of behaviour and social relationships. Methods: A survey using self and parent report forms of the Strengths and Difficulties Questionnaire. Results: Both parents and individuals with WS (N = 31) reported difficulties in emotional disorder and hyperactivity symptoms and strengths in prosocial behaviours such as altruism and empathy. They disagreed about peer problems. Conclusions: People with WS understand some but not all of their difficulties. In particular they fail to recognize their social difficulties which may lead them to be vulnerable to exploitation.
Resumo:
The aim of this study was to compare the prosodic profiles of English and Spanish-speaking children with WS, examining cross-linguistic differences. Two groups of children with WS, English and Spanish, of similar chronological and nonverbal mental age, were compared on performance in expressive and receptive prosodic tasks from the Profiling Elements of Prosody in Speech-Communication (PEPS-C) battery in its English or Spanish version. Differences between the English and Spanish WS groups were found regarding the understanding of affect through prosodic means,using prosody to make words more prominent, and imitating different prosodic patterns. Such differences between the two WS groups on function prosody tasks mirrored the cross-linguistic differences already reported in typically developing children.
Resumo:
Previous results from research on individuals with Asperger syndrome (AS) suggest a diminished ability for recalling episodic autobiographical memory (AM). The primary aim of this study was to explore autobiographical memory in individuals with Asperger syndrome and specifically to investigate whether memories in those with AS are characterized by fewer episodic 'remembered' events (due to a deficit in autonoetic consciousness). A further aim was to examine whether such changes in AM might also be related to changes in identity, due to the close relationship between memory and the self and to the established differences in self-referential processes in AS. Eleven adults with AS and fifteen matched comparison participants were asked to recall autobiographical memories from three lifetime periods and for each memory to give either a remember response (autonoetic consciousness) or a know response (noetic consciousness). The pattern of results shows that AS participants recalled fewer memories and that these memories were more often rated as known, compared to the comparison group. AS participants also showed differences in reported identity, generating fewer social identity statements and more abstract, trait-linked identities. The data support the view that differences in both memory and reported personal identities in AS are characterized by a lack of specificity.
Resumo:
Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic β cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of β cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials.gov as NCT00429195.