84 resultados para colonial cycle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this research is to show that reliability analysis and its implementation will lead to an improved whole life performance of the building systems, and hence their life cycle costs (LCC). Design/methodology/approach – This paper analyses reliability impacts on the whole life cycle of building systems, and reviews the up-to-date approaches adopted in UK construction, based on questionnaires designed to investigate the use of reliability within the industry. Findings – Approaches to reliability design and maintainability design have been introduced from the operating environment level, system structural level and component level, and a scheduled maintenance logic tree is modified based on the model developed by Pride. Different stages of the whole life cycle of building services systems, reliability-associated factors should be considered to ensure the system's whole life performance. It is suggested that data analysis should be applied in reliability design, maintainability design, and maintenance policy development. Originality/value – The paper presents important factors in different stages of the whole life cycle of the systems, and reliability and maintainability design approaches which can be helpful for building services system designers. The survey from the questionnaires provides the designers with understanding of key impacting factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular actions of genistein are believed to mediate the decreased risk of breast cancer associated with high soy consumption. We have investigated the intracellular metabolism of genistein in T47D tumorigenic and MCF-10A nontumorigenic cells and assessed the cellular actions of resultant metabolites. Genistein selectively induced growth arrest and G2-M phase cell cycle block in T47D but not MCF10A breast epithelial cells. These antiproliferative effects were paralleled by significant differences in the association of genistein to cells and in particular its intracellular metabolism. Genistein was selectively taken up into T47D cells and was subject to metabolism by CYP450 enzymes leading to the formation of both 5,7,3',4'-tetrahydroxyisoflavone (THIF) and two glutathionyl conjugates of THIF THIF inhibited cdc2 activation via the phosphorylation of p38 MAP kinase, suggesting that this species may mediate genistein's cellular actions. THIF exposure activated p38 and caused subsequent inhibition of cyclin B1 (Ser 147) and cdc2 (Thr 161) phosphorylation, two events critical for the correct functioning of the cdc2-cyclin B1 complex. We suggest that the formation of THIF may mediate the cellular actions of genistein in tumorigenic breast epithelial cells via the activation of signaling through p38. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apolipoprotein E4 (apoE4) genotype is associated with an increased risk for Alzheimer's disease (AD). This is thought to be in part attributable to an impact of apoE genotype on the processing of the transmembrane amyloid precursor protein (APP) thereby contributing to amyloid beta peptide formation in apoE4 carriers, which is a primary patho-physiological feature of AD. As apoE and alphato-copherol (alpha-toc) have been shown to modulate membrane bilayer properties and hippocampal gene expression, we studied the effect of apoE genotype on APP metabolism and cell cycle regulation in response to dietary a-toc. ApoE3 and apoE4 transgenic mice were fed a diet low (VE) or high (+VE) in vitamin E (3 and 235 mg alpha-toe/kg diet, respectively) for 12 weeks. Cholesterol levels and membrane fluidity were not different in synaptosomal plasma membranes isolated from brains of apoE3 and apoE4 mice (-VE and +VE). Non-amyloidogenic alpha-secretase mRNA concentration and activity were significantly higher in brains of apoE3 relative to apoE4 mice irrespective of the dietary a-toe supply, while amyloidogenic beta-secretase and gamma-secretase remained unchanged. Relative mRNA concentration of cell cycle related proteins were modulated differentially by dietary a-toc supplementation in apoE3 and apoE4 mice, suggesting genotype-dependent signalling effects on cell cycle regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is evidence to suggest that insulin sensitivity may vary in response to changes in sex hormone levels. However, the results Of human studies designed to investigate changes in insulin sensitivity through the menstrual cycle have proved inconclusive. The aims of this Study were to 1) evaluate the impact of menstrual cycle phase on insulin sensitivity measures and 2) determine the variability Of insulin sensitivity measures within the same menstrual cycle phase. A controlled observational study of 13 healthy premenopausal women, not taking any hormone preparation and having regular menstrual cycles, was conducted. Insulin sensitivity (Si) and glucose effectiveness (Sg) were measured using an intravenous glucose tolerance test (IVGTT) with minimal model analysis. Additional Surrogate measures Of insulin sensitivity were calculated (homoeostasis model for insulin resistance [HOMA IR], quantitative insulin-to-glucose check index [QUICKI] and revised QUICKI [rQUICKI]), as well as plasma lipids. Each woman was tested in the luteal and follicular phases of her Menstrual cycle, and duplicate measures were taken in one phase of the cycle. No significant differences in insulin sensitivity (measured by the IVGTT or Surrogate markers) or plasma lipids were reported between the two phases of the menstrual cycle or between duplicate measures within the same phase. It was Concluded that variability in measures of insulin sensitivity were similar within and between menstrual phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial cells (EC) express constitutively two major isofonns (Nox2 and Nox4) of the catalytic subunit of NADPH oxidase, which is a major source of endothelial reactive oxygen species. However, the individual roles of these Noxes in endothelial function remain unclear. We have investigated the role of Nox2 in nutrient deprivation-induced cell cycle arrest and apoptosis. In proliferating human dermal microvascular EC, Nox2 mRNA expression was low relative to Nox4 (Nox2:Nox4 similar to 1:13), but was upregulated 24 It after starvation and increased to 8 +/- 3.5-fold at 36 h of starvation. Accompanying the upregulation of Nox2, there was a 2.28 +/- 0.18-fold increase in O-2(-); production, a dramatic induction of p21(cip1) and p53, cell cycle arrest, and the onset of apoptosis (all p < 0.05). All these changes were inhibited significantly by in vitro deletion of Nox2 expression and in coronary microvascular EC isolated from Nox2 knockout mice. In Nox2 knockout cells, although there was a 3.8 +/- 0.5fold increase in Nox4 mRNA expression after 36 h of starvation (p < 0.01), neither production nor the p21(cip1) or p53 expression was increased significantly and only 0.46% of cells were apoptotic. In conclusion, Nox2-derived O-2(-), through the modulation of p21(cip1) and p53 expression, participates in endothelial cell cycle regulation and apoptosis. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, we have witnessed major advances in our understanding of the mammalian cell cycle and how it is regulated. Normal mammalian cellular proliferation is tightly regulated at each phase of the cell cycle by the activation and deactivation of a series of proteins that constitute the cell cycle machinery. This review article describes the various phases of the mammalian cell cycle and focuses on the cell cycle regulatory molecules that act at each stage to ensure normal cellular progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the cellular responses to hydrostatic pressure by using the fission yeast Schizosaccharomyces pombe as a model system. Exposure to sublethal levels of hydrostatic pressure resulted in G2 cell cycle delay. This delay resulted from Cdc2 tyrosine-15 (Y-15) phosphorylation, and it was abrogated by simultaneous disruption of the Cdc2 kinase regulators Cdc25 and Wee1. However, cell cycle delay was independent of the DNA damage, cytokinesis, and cell size checkpoints, suggesting a novel mechanism of Cdc2-Y15 phosphorylation in response to hydrostatic pressure. Spc1/Sty1 mitogen-activated protein (MAP) kinase, a conserved member of the eukaryotic stress-activated p38, mitogen-activated protein (MAP) kinase family, was rapidly activated after pressure stress, and it was required for cell cycle recovery under these conditions, in part through promoting polo kinase (Plo1) phosphorylation on serine 402. Moreover, the Spc1 MAP kinase pathway played a key role in maintaining cell viability under hydrostatic pressure stress through the bZip transcription factor, Atf1. Further analysis revealed that prestressing cells with heat increased barotolerance, suggesting adaptational cross-talk between these stress responses. These findings provide new insight into eukaryotic homeostasis after exposure to pressure stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac repair following myocardial injury is restricted due to the limited proliferative potential of adult cardiomyocytes. The ability of mammalian cardiomyocytes to proliferate is lost shortly after birth as cardiomyocytes withdraw from the cell cycle and differentiate. We do not fully understand the molecular and cellular mechanisms that regulate this cell cycle withdrawal, although if we could it might lead to the discovery of novel therapeutic targets for improving cardiac repair following myocardial injury. For the last decade, researchers have investigated cardiomyocyte cell cycle control, commonly using transgenic mouse models or recombinant adenoviruses to manipulate cell cycle regulators in vivo or in vitro. This review discusses cardiomyocyte cell cycle regulation and summarises recent data from studies manipulating the expressions and activities of cell cycle regulators in cardiomyocytes. The validity of therapeutic strategies that aim to reinstate the proliferative potential of cardiomyocytes to improve myocardial repair following injury will be discussed. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronary artery disease is one of the most common heart pathologies. Restriction of blood flow to the heart by atherosclerotic lesions, leading to angina pectoris and myocardial infarction, damages the heart, resulting in impaired cardiac function. Damaged myocardium is replaced by scar tissue since surviving cardiomyocytes are unable to proliferate to replace lost heart tissue. Although narrowing of the coronary arteries can be treated successfully using coronary revascularisation procedures, re-occlusion of the treated vessels remains a significant clinical problem. Cell cycle control mechanisms are key in both the impaired cardiac repair by surviving cardiomyocytes and re-narrowing of treated vessels by maladaptive proliferation of vascular smooth muscle cells. Strategies targeting the cell cycle machinery in the heart and vasculature offer promise both for the improvement of cardiac repair following MI and the prevention of restenosis and bypass graft failure following revascularisation procedures.