76 resultados para beam-to-column connections
Resumo:
The time scale of the response of the high-latitude dayside ionospheric flow to changes in the North-South component of the interplanetary magnetic field (IMF) has been investigated by examining the time delays between corresponding sudden changes. Approximately 40 h of simultaneous IMF and ionospheric flow data have been examined, obtained by the AMPTE-UKS and -IRM spacecraft and the EISCAT “Polar” experiment, respectively, in which 20 corresponding sudden changes have been identified. Ten of these changes were associated with southward turnings of the IMF, and 10 with northward turnings. It has been found that the corresponding flow changes occurred simultaneously over the whole of the “Polar” field-of-view, extending more than 2° in invariant latitude, and that the ionospheric response delay following northward turnings is the same as that following southward turnings, though the form of the response is different in the two cases. The shortest response time, 5.5 ± 3.2 min, is found in the early- to mid-afternoon sector, increasing to 9.5 ± 3.0 min in the mid-morning sector, and to 9.5 ± 3.1 min near to dusk. These times represent the delays in the appearance of perturbed flows in the “Polar” field-of-view following the arrival of IMF changes at the subsolar magnetopause. Overall, the results agree very well with those derived by Etemadi et al. (1988, Planet. Space Sci.36, 471) from a general cross-correlation analysis of the IMF Bz and “Polar” beam-swinging vector flow data.
Resumo:
Numerical simulations are performed to assess the influence of the large-scale circulation on the transition from suppressed to active convection. As a model tool, we used a coupled-column model. It consists of two cloud-resolving models which are fully coupled via a large-scale circulation which is derived from the requirement that the instantaneous domain-mean potential temperature profiles of the two columns remain close to each other. This is known as the weak-temperature gradient approach. The simulations of the transition are initialized from coupled-column simulations over non-uniform surface forcing and the transition is forced within the dry column by changing the local and/or remote surface forcings to uniform surface forcing across the columns. As the strength of the circulation is reduced to zero, moisture is recharged into the dry column and a transition to active convection occurs once the column is sufficiently moistened to sustain deep convection. Direct effects of changing surface forcing occur over the first few days only. Afterward, it is the evolution of the large-scale circulation which systematically modulates the transition. Its contributions are approximately equally divided between the heating and moistening effects. A transition time is defined to summarize the evolution from suppressed to active convection. It is the time when the rain rate within the dry column is halfway to the mean value obtained at equilibrium over uniform surface forcing. The transition time is around twice as long for a transition that is forced remotely compared to a transition that is forced locally. Simulations in which both local and remote surface forcings are changed produce intermediate transition times.
Resumo:
The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.
Resumo:
Real estate securities have a number of distinct characteristics that differentiate them from stocks generally. Key amongst them is that under-pinning the firms are both real as well as investment assets. The connections between the underlying macro-economy and listed real estate firms is therefore clearly demonstrated and of heightened importance. To consider the linkages with the underlying macro-economic fundamentals we extract the ‘low-frequency’ volatility component from aggregate volatility shocks in 11 international markets over the 1990-2014 period. This is achieved using Engle and Rangel’s (2008) Spline-Generalized Autoregressive Conditional Heteroskedasticity (Spline-GARCH) model. The estimated low-frequency volatility is then examined together with low-frequency macro data in a fixed-effect pooled regression framework. The analysis reveals that the low-frequency volatility of real estate securities has strong and positive association with most of the macroeconomic risk proxies examined. These include interest rates, inflation, GDP and foreign exchange rates.
Resumo:
There has been an Irish presence within the Caribbean since at least the 1620s and yet the historical and cultural dimensions of this encounter remain relatively under-researched and are often conceived of in reductive terms by crude markers such as redlegs or poor whites. While there are some striking reminders of this hitory throughout the region, this collection explores how the complications and contradictions of Irish Caribbean relations are much richer and deeper than previously recognized. Caribbean Irish Connections makes an important contribution to Irish studies by challenging the dominance of a US diasporic history and a disciplinary focus on cultural continuity and ancestry. Likewise, within Caribbean studies, the Irish presence troubles the orthodox historical models for understanding race and the plantation, race and class structures, as well as questions of ethnic and religious minorities. The contributors emphasize the importance of understanding the transatlantic nexus between Ireland and the Caribbean in terms of the shared historical experiences of dislocation, diaspora and colonization, as well as of direct encounter. This collection pays tribute to the extraordinarily rich tradition of cultural expression that informs both cultures and their imagination of each other.
Resumo:
Using a combination of idealized radiative transfer simulations and a case study from the first field campaign of the Saharan Mineral Dust Experiment (SAMUM) in southern Morocco, this paper provides a systematic assessment of the limitations of the widely used Spinning Enhanced Visible and Infrared Imager (SEVIRI) red-green-blue (RGB) thermal infrared dust product. Both analyses indicate that the ability of the product to identify dust, via its characteristic pink coloring, is strongly dependent on the column water vapor, the lower tropospheric lapse rate, and dust altitude. In particular, when column water vapor exceeds ∼20–25 mm, dust presence, even for visible optical depths of the order 0.8, is effectively masked. Variability in dust optical properties also has a marked impact on the imagery, primarily as a result of variability in dust composition. There is a moderate sensitivity to the satellite viewing geometry, particularly in moist conditions. The underlying surface can act to confound the signal seen through variations in spectral emissivity, which are predominantly manifested in the 8.7μm SEVIRI channel. In addition, if a temperature inversion is present, typical of early morning conditions over the Sahara and Sahel, an increased dust loading can actually reduce the pink coloring of the RGB image compared to pristine conditions. Attempts to match specific SEVIRI observations to simulations using SAMUM measurements are challenging because of high uncertainties in surface skin temperature and emissivity. Recommendations concerning the use and interpretation of the SEVIRI RGB imagery are provided on the basis of these findings.
Resumo:
Mobile devices can enhance undergraduate research projects and students’ research capabilities. The use of mobile devices such as tablet computers will not automatically make undergraduates better researchers, but their use should make investigations, writing, and publishing more effective and may even save students time. We have explored some of the possibilities of using “tablets” and “smartphones” to aid the research and inquiry process in geography and bioscience fieldwork. We provide two case studies as illustration of how students working in small research groups use mobile devices to gather and analyze primary data in field-based inquiry. Since April 2010, Apple’s iPad has changed the way people behave in the digital world and how they access their music, watch videos, or read their email much as the entrepreneurs Steve Jobs and Jonathan Ive intended. Now with “apps” and “the cloud” and the ubiquitous references to them appearing in the press and on TV, academics’ use of tablets is also having an impact on education and research. In our discussion we will refer to use of smartphones such as the iPhone, iPod, and Android devices under the term “tablet”. Android and Microsoft devices may not offer the same facilities as the iPad/iphone, but many app producers now provide versions for several operating systems. Smartphones are becoming more affordable and ubiquitous (Melhuish and Falloon 2010), but a recent study of undergraduate students (Woodcock et al. 2012, 1) found that many students who own smartphones are “largely unaware of their potential to support learning”. Importantly, however, students were found to be “interested in and open to the potential as they become familiar with the possibilities” (Woodcock et al. 2012). Smartphones and iPads could be better utilized than laptops when conducting research in the field because of their portability (Welsh and France 2012). It is imperative for faculty to provide their students with opportunities to discover and employ the potential uses of mobile devices in their learning. However, it is not only the convenience of the iPad or tablet devices or smartphones we wish to promote, but also a way of thinking and behaving digitally. We essentially suggest that making a tablet the center of research increases the connections between related research activities.
Resumo:
We review the effects of dynamical variability on clouds and radiation in observations and models and discuss their implications for cloud feedbacks. Jet shifts produce robust meridional dipoles in upper-level clouds and longwave cloud-radiative effect (CRE), but low-level clouds, which do not simply shift with the jet, dominate the shortwave CRE. Because the effect of jet variability on CRE is relatively small, future poleward jet shifts with global warming are only a second-order contribution to the total CRE changes around the midlatitudes, suggesting a dominant role for thermodynamic effects. This implies that constraining the dynamical response is unlikely to reduce the uncertainty in extratropical cloud feedback. However, we argue that uncertainty in the cloud-radiative response does affect the atmospheric circulation response to global warming, by modulating patterns of diabatic forcing. How cloud feedbacks can affect the dynamical response to global warming is an important topic of future research.
Resumo:
The practices and decision-making of contemporary agricultural producers are governed by a multitude of different, and sometimes competing, social, economic, regulatory, environmental and ethical imperatives. Understanding how they negotiate and adapt to the demands of this complex and dynamic environment is crucial in maintaining an economically and environmentally viable and resilient agricultural sector. This paper takes a socio-cultural approach to explore the development of social resilience within agriculture through an original and empirically grounded discussion of people-place connections amongst UK farmers. It positions enchantment as central in shaping farmers' embodied and experiential connections with their farms through establishing hopeful, disruptive and demanding ethical practices. Farms emerge as complex moral economies in which an expanded conceptualisation of the social entangles human and non-human actants in dynamic and contextual webs of power and responsibility. While acknowledging that all farms are embedded within broader, nested levels, this paper argues that it is at the micro-scale that the personal, contingent and embodied relations that connect farmers to their farms are experienced and which, in turn, govern their capacity to develop social resilience.
Resumo:
Maximally effective concentrations of endothelin-1 (ET-1), acidic FGF (aFGF), or 12-O-tetradecanoylphorbol-13-acetate (TPA) activated mitogen-activated protein kinase (MAPK) by 3-4-fold in crude extracts of myocytes cultured from neonatal rat heart ventricles. Maximal activation was achieved after 5 min. Thereafter, MAPK activity stimulated by ET-1 or aFGF declined to control values within 1-2 h, whereas activation by TPA was more sustained. Two peaks of MAPK activity (a 42- and a 44-kDa MAPK) were resolved in cells exposed to ET-1 or aFGF by fast protein liquid chromatography on a Mono Q column. One major and one minor peak of MAPK kinase (MAPKK) was stimulated by ET-1 or aFGF. Cardiac myocytes expressed protein kinase C (PKC)-alpha, -delta, -epsilon and -zeta as shown immunoblotting. Exposure to 1 microM TPA for 24 h down-regulated PKC-alpha, -delta, and -epsilon, but not PKC-zeta. This maneuver wholly abolished the activation of MAPK on re-exposure to TPA but did not affect the response to aFGF. The effect of ET-1 was partially down-regulated. ET-1 stimulated phospho[3H]inositide hydrolysis 18-fold, whereas aFGF stimulated by only 30%. Agonists which initially utilize dissimilar signaling pathways may therefore converge at the level of MAPKK/MAPK and this may be relevant to the hypertrophic response of the heart.
Resumo:
Idealized explicit convection simulations of the Met Office Unified Model exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen in other models in previous studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor field. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy (MSE), following Wing and Emanuel [2014], reveals that the direct radiative feedback (including significant cloud longwave effects) is dominant in both the initial development of self-aggregation and the maintenance of an aggregated state. A low-level circulation at intermediate stages of aggregation does appear to transport MSE from drier to moister regions, but this circulation is mostly balanced by other advective effects of opposite sign and is forced by horizontal anomalies of convective heating (not radiation). Sensitivity studies with either fixed prescribed radiative cooling, fixed prescribed surface fluxes, or both do not show full self-aggregation from homogeneous initial conditions, though fixed surface fluxes do not disaggregate an initialized aggregated state. A sensitivity study in which rain evaporation is turned off shows more rapid self-aggregation, while a run with this change plus fixed radiative cooling still shows strong self-aggregation, supporting a “moisture memory” effect found in Muller and Bony [2015]. Interestingly, self-aggregation occurs even in simulations with sea surface temperatures (SSTs) of 295 K and 290 K, with direct radiative feedbacks dominating the budget of MSE variance, in contrast to results in some previous studies.
Resumo:
The role of the local atmospheric forcing on the ocean mixed layer depth (MLD) over the global oceans is studied using ocean reanalysis data products and a single-column ocean model coupled to an atmospheric general circulation model. The focus of this study is on how the annual mean and the seasonal cycle of the MLD relate to various forcing characteristics in different parts of the world's ocean, and how anomalous variations in the monthly mean MLD relate to anomalous atmospheric forcings. By analysing both ocean reanalysis data and the single-column ocean model, regions with different dominant forcings and different mean and variability characteristics of the MLD can be identified. Many of the global oceans' MLD characteristics appear to be directly linked to different atmospheric forcing characteristics at different locations. Here, heating and wind-stress are identified as the main drivers; in some, mostly coastal, regions the atmospheric salinity forcing also contributes. The annual mean MLD is more closely related to the annual mean wind-stress and the MLD seasonality is more closely to the seasonality in heating. The single-column ocean model, however, also points out that the MLD characteristics over most global ocean regions, and in particular the tropics and subtropics, cannot be maintained by local atmospheric forcings only, but are also a result of ocean dynamics that are not simulated in a single-column ocean model. Thus, lateral ocean dynamics are essentially in correctly simulating observed MLD.
Resumo:
Matrix-assisted laser desorption/ionisation (MALDI) coupled with time-of-flight (TOF) mass spectrometry (MS) is a powerful tool for the analysis of biological samples, and nanoflow high-performance liquid chromatography (nanoHPLC) is a useful separation technique for the analysis of complex proteomics samples. The off-line combination of MALDI and nanoHPLC has been extensively investigated and straightforward techniques have been developed, focussing particularly on automated MALDI sample preparation that yields sensitive and reproducible spectra. Normally conventional solid MALDI matrices such as α-cyano-4-hydroxycinnamic acid (CHCA) are used for sample preparation. However, they have limited usefulness in quantitative measurements and automated data acquisition because of the formation of heterogeneous crystals, resulting in highly variable ion yields and desorption/ ionization characteristics. Glycerol-based liquid support matrices (LSM) have been proposed as an alternative to the traditional solid matrices as they provide increased shot-to-shot reproducibility, leading to prolonged and stable ion signals and therefore better results. This chapter focuses on the integration of the liquid LSM MALDI matrices into the LC-MALDI MS/MS approach in identifying complex and large proteomes. The interface between LC and MALDI consists of a robotic spotter, which fractionates the eluent from the LC column into nanoliter volumes, and co-spots simultaneously the liquid matrix with the eluent fractions onto a MALDI target plate via sheath flow. The efficiency of this method is demonstrated through the analysis of trypsin digests of both bovine serum albumin (BSA) and Lactobacillus plantarum WCFS1 proteins.