110 resultados para bacterial adhesion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130-kd transmembrane glycoprotein and a member of the growing family of receptors with immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PECAM-1 is expressed on platelets, certain T cells, monocytes, neutrophils, and vascular endothelial cells and is involved in a range of cellular processes, though the role of PECAM-1 in platelets is unclear. Cross-linking of PECAM-1 results in phosphorylation of the ITIM allowing the recruitment of signaling proteins that bind by way of Src-homology domain 2 interactions. Proteins that have been implicated in the negative regulation of cellular activation by ITIM-bearing receptors include the tyrosine phosphatases SHP-1 and SHP-2. Tyrosine phosphorylation of immunoreceptor tyrosine-based activatory motif (ITAM)-bearing receptors such as the collagen receptor GPVI-Fc receptor gamma-chain complex on platelets leads to activation. Increasing evidence suggests that ITIM- and ITAM-containing receptors may act antagonistically when expressed on the same cell. In this study it is demonstrated that cross-linking PECAM-1 inhibits the aggregation and secretion of platelets in response to collagen and the GPVI-selective agonist convulxin. In these experiments thrombin-mediated platelet aggregation and secretion were also reduced, albeit to a lesser degree than for collagen, suggesting that PECAM-1 function may not be restricted to the inhibition of ITAM-containing receptor pathways. PECAM-1 activation also inhibited platelet protein tyrosine phosphorylation stimulated by convulxin and thrombin; this was accompanied by inhibition of the mobilization of calcium from intracellular stores. These data suggest that PECAM-1 may play a role in the regulation of platelet function in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GABase assay is widely used to rapidly and accurately quantify levels of extracellular γ-aminobutyric acid (GABA). Here we demonstrate a modification of this assay that enables quantification of intracellular GABA in bacterial cells. Cells are lysed by boiling and ethanolamine-O-sulphate, a GABA transaminase inhibitor is used to distinguish between GABA and succinate semialdehyde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamate plays a central role in a wide range of metabolic processes in bacterial cells. This review focuses on the involvement of glutamate in bacterial stress responses. In particular it reviews the role of glutamate metabolism in response against acid stress and other stresses. The glutamate decarboxylase (GAD) system has been implicated in acid tolerance in several bacterial genera. This system facilitates intracellular pH homeostasis by consuming protons in a decarboxylation reaction that produces γ-aminobutyrate (GABA) from glutamate. An antiporter system is usually present to couple the uptake of glutamate to the efflux of GABA. Recent insights into the functioning of this system will be discussed. Finally the intracellular fate of GABA will also be discussed. Many bacteria are capable of metabolising GABA to succinate via the GABA shunt pathway. The role and regulation of this pathway will be addressed in the review. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 16S rRNA genes from spirochaetes associated with digital dermatitis of British cattle were amplified by polymerase chain reaction from digital dermatitis lesion biopsies using one universal and one treponeme-specific primer. Two treponemal sequences were identified both of which shared a high degree of homology with the oral pathogen Treponema denticola (98%). Two further 16S rRNA gene sequences were obtained and shared similarity to Bacteroides levii (99%) and Mycoplasma hyopharyngis (98%). Polymerase chain reaction with T. denticola-specific primers amplified a potential virulence gene from digital dermatitis lesions which shared a high degree of homology to the 46-kDa haemolysin gene of T. denticola. The significance of the presence of organisms in digital dermatitis lesions of the bovine foot which are closely related to oral pathogens is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat ileal air interface and submerged explant models were developed and used to compare the adhesion of Salmonella enterica var Enteritidis wild-type strains with that of their isogenic single and multiple deletion mutants. The modified strains studied were defective for fimbriae, flagella, motility or chemotaxis and binding was assessed on tissues with and without an intact mucus layer. A multiple afimbriate/aflagellate (fim(-)/fla(-)) strain, a fimbriate but aflagellate (fla(-)) strain and a fimbriate/flagellate but non-motile (mot(-)) strain bound significantly less extensively to the explants than the corresponding wild-type strains. With the submerged explant model this difference was evident in tissues with or without a mucus layer, whereas in the air interface model it was observed only in tissues,vith an intact mucus layer. A smooth swimming chemotaxis-defective (che(-)) strain and single or multiple afimbriate strains bound to explants as well as their corresponding wild-type strain. This suggests that under the present experimental conditions fimbriae were not essential for attachment of S. enterica var Enteritidis to rat ileal explants, However; the possession of active flagella did appear to be an important factor. in enabling salmonellae to penetrate the gastrointestinal mucus layer and attach specifically to epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To test the efficacy of Lactobacillus johnsonii FI9785 in reducing the colonization and shedding of Salmonella enterica serotype Enteritidis, Escherichia coli O78:K80 and Clostridium perfringens in poultry. Methods and Results: Specific pathogen-free chicks (1 day old) were dosed with a single oral inoculum of 1 x 10(9) CFU. Lactobacillus johnsonii FI9785 and 24 h later were challenged in separate experiments with S. Enteritidis (S1400, nal(r)) and E. coli O78:K80 (EC34195, nal(r)). There were no significant effects against S. Enteritidis whereas colonization of the small intestine by E. coli O78:K80 was reduced significantly. Both S. Enteritidis and E. coli colonized the caeca and colon to levels equivalent to control birds and there was no reduction in shedding as assessed by a semi-quantitative cloacal swabbing technique. Specific pathogen-free chicks (20 day old) were dosed with a single oral inoculum of 1 x 10(9) CFU L. johnsonii FI9785 and 24 h later were challenged with C. perfringens. A single oral dose of L. johnsonii FI9785 was sufficient to suppress all aspects of colonization and persistence of C. perfringens. Conclusions: Lactobacillus johnsonii FI9785 may be given to poultry for use as a competitive exclusion agent to control C. perfringens. Significance and Impact of the Study: Lactobacillus johnsonii FI9785 may be a valuable tool to control the endemic disease of necrotic enteritis, thereby reducing economic losses associated with reduced use of antimicrobials in the poultry industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing evidence that a number of oral Treponema species, in particular Treponema denticola, are associated with the progression of human periodontal disease. The major sheath (or surface) protein (Msp) of T. denticola is implicated in adhesion of bacteria to host cells and tissue proteins and is likely to be an important virulence factor. However, the binding regions of the Msp are not known. We have purified from Escherichia coli recombinant Msp (rMsp) polypeptides corresponding to the following: full-length Msp (rMsp) minus 13 N-terminal amino acid (aa) residues, an amino-terminal fragment (rN-Msp, 189 aa residues), a 57-aa residue segment from the central region (rV-Msp), and a C-terminal fragment (rC-Msp, 272 aa residues). rMsp (530 aa residues) bound to immobilized fibronectin, keratin, laminin, collagen type 1, fibrinogen, hyaluronic acid, and heparin. The N- and V-region polypeptides, but not rC-Msp, also bound to these substrates. Binding of rMsp to fibronectin was targeted to the N-terminal heparin I/fibrin I domain. Antibodies to the N-region or V-region polypeptides, but not antibodies to the rC-Msp fragment, blocked adhesion of T. denticola ATCC 35405 cells to a range of host protein molecules. These results suggest that the N-terminal half of Msp carries epitopes that are surface exposed and that are involved in mediating adhesion. Binding of rMsp onto the cell surface of low-level fibronectin-binding Treponema isolates conferred a 10-fold increase in fibronectin binding. This confirms that Msp functions autonomously as an adhesin and raises the possibility that phenotypic complementation of virulence functions might occur within mixed populations of Treponema species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enteric bacteria with a demonstrable or potential ability to form attaching-effacing lesions, so-called attaching-effacing (AE) bacteria, have been found in the intestinal tracts of a wide variety of warm-blooded animal species, including man. In some host species, for example cattle, pigs, rabbits and human beings, attaching-effacing Escherichia coli (AEEC) have an established role as enteropathogens. In other host species, AE bacteria are of less certain significance. With continuing advances in the detection and typing of AE strains, the importance of these bacteria for many hosts is likely to become clearer. The pathogenic effects of AE bacteria result from adhesion to the intestinal mucosa by a variety of mechanisms, culminating in the formation of the characteristic intimate adhesion of the AE lesion. The ability to induce AE lesions is mediated by the co-ordinated expression of some 40 bacterial genes organized within a so-called pathogenicity island, known as the "Locus for Enterocyte Effacement". It is also believed that the production of bacterial toxins, principally Vero toxins, is a significant virulence factor for some A-EEC strains. Recent areas of research into AE bacteria include: the use of Citrobacter rodentium to model human AEEC disease; quorum-sensing mechanisms used by AEEC to modulate virulence gene expression; and the potential role of adhesion in the persistent colonization of the intestine by AE bacteria. This review of AE bacteria covers their molecular biology, their occurrence in various animal species, and the diagnosis, pathology and clinical aspects of animal diseases with which they are associated. Reference is made to human pathogens where appropriate. The focus is mainly on natural colonization and disease, but complementary experimental data are also included. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the construction and characterisation of a BAC library from the maize flint inbred line F2, widely used in European maize breeding programs. The library contains 86,858 clones with an average insert size of approximately 90 kb, giving approximately 3.2-times genome coverage. High-efficiency BAC cloning was achieved through the use of a single size selection for the high-molecular-weight genomic DNA, and co-transformation of the ligation with yeast tRNA to optimise transformation efficiency. Characterisation of the library showed that less than 0.5% of the clones contained no inserts, while 5.52% of clones consisted of chloroplast DNA. The library was gridded onto 29 nylon filters in a double-spotted 8 × 8 array, and screened by hybridisation with a number of single-copy and gene-family probes. A 3-dimensional DNA pooling scheme was used to allow rapid PCR screening of the library based on primer pairs from simple sequence repeat (SSR) and expressed sequence tag (EST) markers. Positive clones were obtained in all hybridisation and PCR screens carried out so far. Six BAC clones, which hybridised to a portion of the cloned Rp1-D rust resistance gene, were further characterised and found to form contigs covering most of this complex resistance locus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the long term development of networks of glia and neurons on patterns of Parylene-C on a SiO2 substrate. We harvested glia and neurons from the Sprague-Dawley (P1–P7) rat hippocampus and utilized an established cell patterning technique in order to investigate cellular migration, over the course of 3 weeks. This work demonstrates that uncontrolled glial mitosis gradually disrupts cellular patterns that are established early during culture. This effect is not attributed to a loss of protein from the Parylene-C surface, as nitrogen levels on the substrate remain stable over 3 weeks. The inclusion of the anti-mitotic cytarabine (Ara-C) in the culture medium moderates glial division and thus, adequately preserves initial glial and neuronal conformity to underlying patterns. Neuronal apoptosis, often associated with the use of Ara-C, is mitigated by the addition of brain derived neurotrophic factor (BDNF). We believe that with the right combination of glial inhibitors and neuronal promoters, the Parylene-C based cell patterning method can generate structured, active neural networks that can be sustained and investigated over extended periods of time. To our knowledge this is the first report on the concurrent application of Ara-C and BDNF on patterned cell cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly and bioactivity of the peptide–polymer conjugate DGRFFF–PEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol-1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of b-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFF–PEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the core–shell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of versatile bioactive surfaces able to emulate in vivo conditions is of enormous importance to the future of cell and tissue therapy. Tuning cell behaviour on two-dimensional surfaces so that the cells perform as if they were in a natural three-dimensional tissue represents a significant challenge, but one that must be met if the early promise of cell and tissue therapy is to be fully realised. Due to the inherent complexities involved in the manufacture of biomimetic three-dimensional substrates, the scaling up of engineered tissue-based therapies may be simpler if based upon proven two-dimensional culture systems. In this work, we developed new coating materials composed of the self-assembling peptide amphiphiles (PAs) C16G3RGD (RGD) and C16G3RGDS (RGDS) shown to control cell adhesion and tissue architecture while avoiding the use of serum. When mixed with the C16ETTES diluent PA at 13 : 87 (mol mol-1) ratio at 1.25 times 10-3 M, the bioactive {PAs} were shown to support optimal adhesion, maximal proliferation, and prolonged viability of human corneal stromal fibroblasts ({hCSFs)}, while improving the cell phenotype. These {PAs} also provided stable adhesive coatings on highly-hydrophobic surfaces composed of striated polytetrafluoroethylene ({PTFE)}, significantly enhancing proliferation of aligned cells and increasing the complexity of the produced tissue. The thickness and structure of this highly-organised tissue were similar to those observed in vivo, comprising aligned newly-deposited extracellular matrix. As such, the developed coatings can constitute a versatile biomaterial for applications in cell biology, tissue engineering, and regenerative medicine requiring serum-free conditions.