86 resultados para asymptotic suboptimality


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a novel method for determining the pressure and velocity fields for a weakly compressible fluid flowing in a thin three-dimensional layer composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Our approach uses the method of matched asymptotic expansions to derive expressions for all significant process quantities, the computation of which requires only the solution of linear, elliptic, two-dimensional boundary value and eigenvalue problems. In this article, we provide full implementation details and present numerical results demonstrating the efficiency and accuracy of our scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The case is made for a more careful analysis of the large time asymptotic of infinite particle systems in the thermodynamic limit beyond zero density. The insufficiency of current analysis even in the model case of free particles is demonstrated. Recent advances based on more sophisticated analytical tools like functions of mean variation and Hardy spaces are sketched.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study two-dimensional (2D) turbulence in a doubly periodic domain driven by a monoscale-like forcing and damped by various dissipation mechanisms of the form νμ(−Δ)μ. By “monoscale-like” we mean that the forcing is applied over a finite range of wavenumbers kmin≤k≤kmax, and that the ratio of enstrophy injection η≥0 to energy injection ε≥0 is bounded by kmin2ε≤η≤kmax2ε. Such a forcing is frequently considered in theoretical and numerical studies of 2D turbulence. It is shown that for μ≥0 the asymptotic behaviour satisfies ∥u∥12≤kmax2∥u∥2, where ∥u∥2 and ∥u∥12 are the energy and enstrophy, respectively. If the condition of monoscale-like forcing holds only in a time-mean sense, then the inequality holds in the time mean. It is also shown that for Navier–Stokes turbulence (μ=1), the time-mean enstrophy dissipation rate is bounded from above by 2ν1kmax2. These results place strong constraints on the spectral distribution of energy and enstrophy and of their dissipation, and thereby on the existence of energy and enstrophy cascades, in such systems. In particular, the classical dual cascade picture is shown to be invalid for forced 2D Navier–Stokes turbulence (μ=1) when it is forced in this manner. Inclusion of Ekman drag (μ=0) along with molecular viscosity permits a dual cascade, but is incompatible with the log-modified −3 power law for the energy spectrum in the enstrophy-cascading inertial range. In order to achieve the latter, it is necessary to invoke an inverse viscosity (μ<0). These constraints on permissible power laws apply for any spectrally localized forcing, not just for monoscale-like forcing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of a slowest invariant manifold is investigated for the five-component model of Lorenz under conservative dynamics. It is shown that Lorenz's model is a two-degree-of-freedom canonical Hamiltonian system, consisting of a nonlinear vorticity-triad oscillator coupled to a linear gravity wave oscillator, whose solutions consist of regular and chaotic orbits. When either the Rossby number or the rotational Froude number is small, there is a formal separation of timescales, and one can speak of fast and slow motion. In the same regime, the coupling is weak, and the Kolmogorov–Arnold-Moser theorem is shown to apply. The chaotic orbits are inherently unbalanced and are confined to regions sandwiched between invariant tori consisting of quasi-periodic regular orbits. The regular orbits generally contain free fast motion, but a slowest invariant manifold may be geometrically defined as the set of all slow cores of invariant tori (defined by zero fast action) that are smoothly related to such cores in the uncoupled system. This slowest invariant manifold is not global; in fact, its structure is fractal; but it is of nearly full measure in the limit of weak coupling. It is also nonlinearly stable. As the coupling increases, the slowest invariant manifold shrinks until it disappears altogether. The results clarify previous definitions of a slowest invariant manifold and highlight the ambiguity in the definition of “slowness.” An asymptotic procedure, analogous to standard initialization techniques, is found to yield nonzero free fast motion even when the core solutions contain none. A hierarchy of Hamiltonian balanced models preserving the symmetries in the original low-order model is formulated; these models are compared with classic balanced models, asymptotically initialized solutions of the full system and the slowest invariant manifold defined by the core solutions. The analysis suggests that for sufficiently small Rossby or rotational Froude numbers, a stable slowest invariant manifold can be defined for this system, which has zero free gravity wave activity, but it cannot be defined everywhere. The implications of the results for more complex systems are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of constructing balance dynamics for rapidly rotating fluid systems. It is argued that the conventional Rossby number expansion—namely expanding all variables in a series in Rossby number—is secular for all but the simplest flows. In particular, the higher-order terms in the expansion grow exponentially on average, and for moderate values of the Rossby number the expansion is, at best, useful only for times of the order of the doubling times of the instabilities of the underlying quasi-geostrophic dynamics. Similar arguments apply in a wide class of problems involving a small parameter and sufficiently complex zeroth-order dynamics. A modified procedure is proposed which involves expanding only the fast modes of the system; this is equivalent to an asymptotic approximation of the slaving relation that relates the fast modes to the slow modes. The procedure is systematic and thus capable, at least in principle, of being carried to any order—unlike procedures based on truncations. We apply the procedure to construct higher-order balance approximations of the shallow-water equations. At the lowest order quasi-geostrophy emerges. At the next order the system incorporates gradient-wind balance, although the balance relations themselves involve only linear inversions and hence are easily applied. There is a large class of reduced systems associated with various choices for the slow variables, but the simplest ones appear to be those based on potential vorticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial structure of beta-plane Rossby waves in a sinusoidal basic zonal flow U 0cos(γ,y) is determined analytically in the (stable) asymptotic limit of weak shear, U 0γ2 0/β≈1. The propagating neutral normal modes are found to take their greatest amplitude in the region of maximum westerly flow, while their most rapid phase variation is achieved in the region of maximum easterly flow. These results are shown to be consistent with what is obtained by ray-tracing methods in the limit of small meridional disturbance wavelength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we obtain quantitative estimates for the asymptotic density of subsets of the integer lattice Z2 that contain only trivial solutions to an additive equation involving binary forms. In the process we develop an analogue of Vinogradov’s mean value theorem applicable to binary forms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geophysical fluid models often support both fast and slow motions. As the dynamics are often dominated by the slow motions, it is desirable to filter out the fast motions by constructing balance models. An example is the quasi geostrophic (QG) model, which is used widely in meteorology and oceanography for theoretical studies, in addition to practical applications such as model initialization and data assimilation. Although the QG model works quite well in the mid-latitudes, its usefulness diminishes as one approaches the equator. Thus far, attempts to derive similar balance models for the tropics have not been entirely successful as the models generally filter out Kelvin waves, which contribute significantly to tropical low-frequency variability. There is much theoretical interest in the dynamics of planetary-scale Kelvin waves, especially for atmospheric and oceanic data assimilation where observations are generally only of the mass field and thus do not constrain the wind field without some kind of diagnostic balance relation. As a result, estimates of Kelvin wave amplitudes can be poor. Our goal is to find a balance model that includes Kelvin waves for planetary-scale motions. Using asymptotic methods, we derive a balance model for the weakly nonlinear equatorial shallow-water equations. Specifically we adopt the ‘slaving’ method proposed by Warn et al. (Q. J. R. Meteorol. Soc., vol. 121, 1995, pp. 723–739), which avoids secular terms in the expansion and thus can in principle be carried out to any order. Different from previous approaches, our expansion is based on a long-wave scaling and the slow dynamics is described using the height field instead of potential vorticity. The leading-order model is equivalent to the truncated long-wave model considered previously (e.g. Heckley & Gill, Q. J. R. Meteorol. Soc., vol. 110, 1984, pp. 203–217), which retains Kelvin waves in addition to equatorial Rossby waves. Our method allows for the derivation of higher-order models which significantly improve the representation of Rossby waves in the isotropic limit. In addition, the ‘slaving’ method is applicable even when the weakly nonlinear assumption is relaxed, and the resulting nonlinear model encompasses the weakly nonlinear model. We also demonstrate that the method can be applied to more realistic stratified models, such as the Boussinesq model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, single-carrier multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of high-power amplifier (HPA) nonlinearity are investigated. Specifically, due to the suboptimality of the conventional maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, we propose the optimal TB scheme with the optimal beamforming weight vector and combining vector, for MIMO systems with nonlinear HPAs. Moreover, an alternative suboptimal but much simpler TB scheme, namely, quantized equal gain transmission (QEGT), is proposed. The latter profits from the property that the elements of the beamforming weight vector have the same constant modulus. The performance of the proposed optimal TB scheme and QEGT/MRC technique in the presence of the HPA nonlinearity is evaluated in terms of the average symbol error probability and mutual information with the Gaussian input, considering the transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects on the performance of several system parameters, namely, the HPA parameters, numbers of antennas, quadrature amplitude modulation modulation order, number of pilot symbols, and cardinality of the beamforming weight vector codebook for QEGT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we investigate the performance of multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of nonlinear high-power amplifiers (HPAs). Due to the suboptimality of maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, quantized equal gain transmission (QEGT) is suggested as a feasible TB scheme. The effect of HPA nonlinearity on the performance of MIMO QEGT/MRC is evaluated in terms of the average symbol error probability (SEP) and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, such as the parameters of nonlinear HPA, cardinality of the beamforming weight vector codebook, and modulation order of quadrature amplitude modulation (QAM), on performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the �rst completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the analysis is the elliptic reconstruction technique.Our theoretical results are backed with extensive numerical experimentation aimed at (a) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (b) deriving an adaptive method based on our estimators. An extra novelty provided is an implementation of a coarsening error "preindicator", with a complete implementation guide in ALBERTA in the appendix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The author developed two GUIs for asymptotic Bode plots and identification from such plots aimed at improving the learning of frequency response methods: these were presented at UKACC Control 2012. Student feedback and reflection by the author suggested various improvements to these GUIs, which have now been implemented. This paper reviews the earlier work, describes the improvements, and includes positive feedback from the students on the GUIs and how they have helped their understanding of the methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider the massless Dirac operator on a 3-torus equipped with Euclidean metric and standard spin structure. It is known that the eigenvalues can be calculated explicitly: the spectrum is symmetric about zero and zero itself is a double eigenvalue. The aim of the paper is to develop a perturbation theory for the eigenvalue with smallest modulus with respect to perturbations of the metric. Here the application of perturbation techniques is hindered by the fact that eigenvalues of the massless Dirac operator have even multiplicity, which is a consequence of this operator commuting with the antilinear operator of charge conjugation (a peculiar feature of dimension 3). We derive an asymptotic formula for the eigenvalue with smallest modulus for arbitrary perturbations of the metric and present two particular families of Riemannian metrics for which the eigenvalue with smallest modulus can be evaluated explicitly. We also establish a relation between our asymptotic formula and the eta invariant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the spectrum of a one-dimensional Dirac operator pencil, with a coupling constant in front of the potential considered as the spectral parameter. Motivated by recent investigations of graphene waveguides, we focus on the values of the coupling constant for which the kernel of the Dirac operator contains a square integrable function. In physics literature such a function is called a confined zero mode. Several results on the asymptotic distribution of coupling constants giving rise to zero modes are obtained. In particular, we show that this distribution depends in a subtle way on the sign variation and the presence of gaps in the potential. Surprisingly, it also depends on the arithmetic properties of certain quantities determined by the potential. We further observe that variable sign potentials may produce complex eigenvalues of the operator pencil. Some examples and numerical calculations illustrating these phenomena are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability of stationary flow of a two-dimensional ice sheet is studied when the ice obeys a power flow law (Glen's flow law). The mass accumulation rate at the top is assumed to depend on elevation and span and the bed supporting the ice sheet consists of an elastic layer lying on a rigid surface. The normal perturbation of the free surface of the ice sheet is a singular eigenvalue problem. The singularity of the perturbation at the front of the ice sheet is considered using matched asymptotic expansions, and the eigenvalue problem is seen to reduce to that with fixed ice front. Numerical solution of the perturbation eigenvalue problem shows that the dependence of accumulation rate on elevation permits the existence of unstable solutions when the equilibrium line is higher than the bed at the ice divide. Alternatively, when the equilibrium line is lower than the bed, there are only stable solutions. Softening of the bed, expressed through a decrease of its elastic modulus, has a stabilising effect on the ice sheet.